{ "cells": [ { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "import numpy as np\n", "from PIL import Image\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "class ImageFractalDimension:\n", " def __init__(self, image_name, SIZE):\n", " self.SIZE = SIZE\n", " image = Image.open(image_name)\n", "\n", " assert image.size[0] == image.size[1] and image.size[\n", " 0] == self.SIZE, \"Height and Width of the image must be equal.\"\n", "\n", " image = np.asarray(image)\n", " self.img_px_array = np.copy(image)\n", "\n", " self.convertImg()\n", " self.fractal_dim = self.calculate_fractal_dim()\n", "\n", " # Turn image data from colour into either 1 or zero for each colour\n", " def convertImg(self):\n", " for i in range(len(self.img_px_array)):\n", " for j in range(len(self.img_px_array[i])):\n", " for k in range(len(self.img_px_array[i][j])):\n", " if (self.img_px_array[i][j][k] == 255):\n", " self.img_px_array[i][j][k] = 0\n", " else:\n", " self.img_px_array[i][j][k] = 1\n", "\n", " def calculate_fractal_dim(self):\n", " self.dimensions = []\n", " self.filled_boxes = []\n", "\n", " self.img_px_array = self.img_px_array[:, :, 0]\n", "\n", " size = 1\n", " while size != self.SIZE:\n", " size *= 2\n", " filled_box = self.boxcount(size)\n", " self.filled_boxes.append(filled_box)\n", " self.dimensions.append(size / self.SIZE)\n", "\n", " return -np.polyfit(np.log(self.dimensions), np.log(self.filled_boxes), 1)[0]\n", "\n", " def blockshaped(self, square_size):\n", " h, w = self.img_px_array.shape\n", " assert h % square_size == 0, \"Array is not evenly divisible\".format(h, square_size)\n", " return (self.img_px_array.reshape(h // square_size, square_size, -1, square_size).swapaxes(1, 2).reshape(-1,\n", " square_size,\n", " square_size))\n", "\n", " def boxcount(self, size):\n", " blocked_arrays = self.blockshaped(size)\n", " counter = 0\n", "\n", " for i in range(len(blocked_arrays)):\n", " for j in range(len(blocked_arrays[i])):\n", " if (blocked_arrays[i][j].any()):\n", " counter += 1\n", " break\n", " return counter\n", "\n", " def graph(self):\n", " plt.plot(-np.log(self.dimensions), np.log(self.filled_boxes))\n", " plt.title(\"Fractal Dimension : \" + str(self.fractal_dim))\n", " plt.show()\n", " plt.clf()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }