1507 lines
327 KiB
Plaintext
1507 lines
327 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import scipy\n",
|
||
"from glob import glob"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"outputs": [],
|
||
"source": [
|
||
"def read_xy(path: str):\n",
|
||
" df = pd.read_csv(path)\n",
|
||
" df['N'] = df.index + 1\n",
|
||
" df['r'] = (df.x ** 2 + df.y ** 2) ** 0.5\n",
|
||
" df['cr'] = df.r.cummax()\n",
|
||
" df['fd'] = np.log(df.N) / np.log(df.cr)\n",
|
||
"\n",
|
||
" return df\n",
|
||
"\n",
|
||
"\n",
|
||
"def read_r3(path: str):\n",
|
||
" df = pd.read_csv(path)\n",
|
||
" df['N'] = df.index + 1\n",
|
||
" df['r'] = (df.r0 ** 2 + df.r1 ** 2 + df.r2 ** 2) ** 0.5\n",
|
||
" df['cr'] = df.r.cummax()\n",
|
||
" df['fd'] = np.log(df.N) / np.log(df.cr)\n",
|
||
"\n",
|
||
" return df"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"outputs": [],
|
||
"source": [
|
||
"def read_all(load_dir: str, reader):\n",
|
||
" paths = glob(f'{load_dir}/*.csv')\n",
|
||
" return [reader(path) for path in paths]"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": " r0 r1 r2 N r cr fd\n0 0 0 0 1 0.000000 0.000000 -0.000000\n1 1 0 0 2 1.000000 1.000000 inf\n2 0 0 1 3 1.000000 1.000000 inf\n3 -1 0 1 4 1.414214 1.414214 4.000000\n4 1 0 1 5 1.414214 1.414214 4.643856\n... .. .. .. ... ... ... ...\n1995 66 13 30 1996 73.654599 76.720271 1.750832\n1996 56 19 29 1997 65.863495 76.720271 1.750947\n1997 68 17 26 1998 74.759615 76.720271 1.751063\n1998 52 22 36 1999 66.962676 76.720271 1.751178\n1999 62 6 17 2000 64.567794 76.720271 1.751293\n\n[2000 rows x 7 columns]",
|
||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>r0</th>\n <th>r1</th>\n <th>r2</th>\n <th>N</th>\n <th>r</th>\n <th>cr</th>\n <th>fd</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0.000000</td>\n <td>0.000000</td>\n <td>-0.000000</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>2</td>\n <td>1.000000</td>\n <td>1.000000</td>\n <td>inf</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>3</td>\n <td>1.000000</td>\n <td>1.000000</td>\n <td>inf</td>\n </tr>\n <tr>\n <th>3</th>\n <td>-1</td>\n <td>0</td>\n <td>1</td>\n <td>4</td>\n <td>1.414214</td>\n <td>1.414214</td>\n <td>4.000000</td>\n </tr>\n <tr>\n <th>4</th>\n <td>1</td>\n <td>0</td>\n <td>1</td>\n <td>5</td>\n <td>1.414214</td>\n <td>1.414214</td>\n <td>4.643856</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1995</th>\n <td>66</td>\n <td>13</td>\n <td>30</td>\n <td>1996</td>\n <td>73.654599</td>\n <td>76.720271</td>\n <td>1.750832</td>\n </tr>\n <tr>\n <th>1996</th>\n <td>56</td>\n <td>19</td>\n <td>29</td>\n <td>1997</td>\n <td>65.863495</td>\n <td>76.720271</td>\n <td>1.750947</td>\n </tr>\n <tr>\n <th>1997</th>\n <td>68</td>\n <td>17</td>\n <td>26</td>\n <td>1998</td>\n <td>74.759615</td>\n <td>76.720271</td>\n <td>1.751063</td>\n </tr>\n <tr>\n <th>1998</th>\n <td>52</td>\n <td>22</td>\n <td>36</td>\n <td>1999</td>\n <td>66.962676</td>\n <td>76.720271</td>\n <td>1.751178</td>\n </tr>\n <tr>\n <th>1999</th>\n <td>62</td>\n <td>6</td>\n <td>17</td>\n <td>2000</td>\n <td>64.567794</td>\n <td>76.720271</td>\n <td>1.751293</td>\n </tr>\n </tbody>\n</table>\n<p>2000 rows × 7 columns</p>\n</div>"
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a = read_r3(\"/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/rust-3d-1/1/1.csv\")\n",
|
||
"a"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n",
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"c2 = read_all('/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/minimal-viable-alteration',\n",
|
||
" read_xy)\n",
|
||
"r2 = read_all('/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/rust-sticking-probability/1',\n",
|
||
" read_xy)\n",
|
||
"r3 = read_all('/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/rust-3d-2/1', read_r3)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmnklEQVR4nO3debxkdX3n/9f3+z1Lbbfu2vf2vtHsyI6IiLigiERNfk7GcUhiTGKi4qhjklGTiZpJJpjMjJPNIY5JJLMoaiaoiYISFAgKsu/Q0EDTe9/uu9d6lu/398epe7tvL8Bt6nbR1Z8nj+JWnXPqnG+dqq7zru/5fr9HOeccQgghhBBtoDtdACGEEEJ0DwkWQgghhGgbCRZCCCGEaBsJFkIIIYRoGwkWQgghhGgbCRZCCCGEaBsJFkIIIYRoGwkWQgghhGgb72hv0FrLjh076OnpQSl1tDcvhBBCiCPgnGNmZobly5ej9eHrJY56sNixYwerVq062psVQgghRBts3bqVlStXHnb+UQ8WPT09QFawcrl8tDcvhBBCiCMwPT3NqlWr5o7jh3PUg8Xs6Y9yuSzBQgghhDjGvFgzBmm8KYQQQoi2kWAhhBBCiLaRYCGEEEKItpFgIYQQQoi2kWAhhBBCiLaRYCGEEEKItpFgIYQQQoi2kWAhhBBCiLaRYCGEEEKItllwsNi+fTu/8Au/wODgIPl8nle96lXce++9i1E2IYQQQhxjFjSk98TEBBdffDFvfOMbufHGG1myZAlPP/00/f39i1U+IYQQQhxDFhQs/viP/5hVq1bxla98ZW7aunXr2l4oIYQQQhybFnQq5Dvf+Q7nn38+P//zP8/w8DDnnHMOX/7yl1/wOc1mk+np6Xm3RWEt3PVXsP3+xVm/EEIIIV7UgoLFs88+y7XXXsuJJ57I97//fT70oQ/x0Y9+lL/7u7877HOuueYaent7526rVq162YU+pIe/Djd9Er78xsVZvxBCCCFelHLOuZe6cBAEnH/++fzkJz+Zm/bRj36Ue+65hzvvvPOQz2k2mzSbzbnHs9dzn5qaau9l07//u3DnX2b3PzfVvvUKIYQQgunpaXp7e1/0+L2gGotly5Zx2mmnzZt26qmnsmXLlsM+JwxDyuXyvJsQQgghutOCgsXFF1/Mxo0b50176qmnWLNmTVsLdUReesWLEEIIIRbJgoLFv//3/5677rqLP/qjP2LTpk189atf5X/+z//J1VdfvVjlE0IIIcQxZEHB4oILLuCGG27ga1/7GmeccQZ/8Ad/wJ/+6Z9y1VVXLVb5FkBqLIQQQohOW9A4FgA/8zM/w8/8zM8sRlmEEEIIcYzrnmuFSBsLIYQQouO6J1gIIYQQouO6KFhIjYUQQgjRad0TLORUiBBCCNFx3RMspMZCCCGE6LguChZCCCGE6LTuCRZyKkQIIYTouO4JFnIqRAghhOi47gkWUmMhhBBCdFz3BAshhBBCdJwECyGEEEK0TRcFCzkVIoQQQnRa9wQLaWMhhBBCdFz3BAshhBBCdFzXBIvxpuK/8yv8lLM6XRQhhBDiuNU1weLGLXmm6OVG3tTpogghhBDHra4JFqk0sRBCCCE6rmuChRBCCCE6r2uChXQKEUIIITqva4KFEEIIITqva4KFVFgIIYQQndc1wUIIIYQQnSfBQgghhBBtI8FCCCGEEG3TNcFCeoUIIYQQndc1wUIIIYQQndc1wUIqLIQQQojO65pgIdFCCCGE6LzuCRaSK4QQQoiO655gIYQQQoiO65pgIRUWQgghROd1TbAQQgghROd1TbCQGgshhBCi87omWEiyEEIIITqve4KFEEIIITqua4KFVFgIIYQQndc1wUIIIYQQnSfBQgghhBBt0zXBwgFY2+liCCGEEMe1rgkWfZHj16K3cIknrS2EEEKITumaYPHq6GIATq5c1uGSCCGEEMevrgkWoDpdACGEEOK410XBQgghhBCdJsFCCCGEEG0jwUIIIYQQbbOgYPG5z30OpdS82ymnnLJYZVsYJ20shBBCiE7zFvqE008/nX/+53/etwJvwasQQgghRJdacCrwPI+lS5cuRlmEEEIIcYxbcBuLp59+muXLl7N+/XquuuoqtmzZ8oLLN5tNpqen590Wh5wKEUIIITptQcHiwgsv5LrrruOmm27i2muv5bnnnuOSSy5hZmbmsM+55ppr6O3tnbutWrXqZRdaCCGEEK9Myjl3xGNgT05OsmbNGr7whS/wq7/6q4dcptls0mw25x5PT0+zatUqpqamKJfLR7rpg2z+j9/DS3oAWPn5S9q2XiGEEEJkx+/e3t4XPX6/rJaXfX19nHTSSWzatOmwy4RhSBiGL2czQgghhDhGvKxxLCqVCs888wzLli1rV3mEEEIIcQxbULD4rd/6LW677TY2b97MT37yE37u534OYwzvfe97F6t8QgghhDiGLOhUyLZt23jve9/L2NgYS5Ys4XWvex133XUXS5YsWazyvWRKeoUIIYQQHbegYHH99dcvVjmEEEII0QXkWiFCCCGEaBsJFkIIIYRoGwkWQgghhGibLgoW0nhTCCGE6LQuChZCCCGE6LTuCRZOaiyEEEKITuueYCGEEEKIjpNgIYQQQoi2kWAhhBBCiLaRYCGEEEKItumiYCGNN4UQQohO66JgIYQQQohOW9BFyF7JppY8QHPwcYp7XwVc0uniCCGEEMelrgkWUc8WplfcgYlLnS6KEEIIcdzqmlMhStpYCCGEEB3XNcFCCCGEEJ0nwUIIIYQQbSPBQgghhBBtI8FCCCGEEG0jwUIIIYQQbSPBQgghhBBtI8FCCCGEEG0jwUIIIYQQbdOFwcJ1ugBCCCHEcasLg4UQQgghOqV7goWTIb2FEEKITuueYCGEEEKIjpNgIYQQQoi2kWAhhBBCiLaRYCGEEEKItumaYCFNN4UQQojO65pgIYQQQojOk2AhhBBCiLaRYCGEEEKItpFgIYQQQoi26b5goeRaIUIIIUSndF+wEEIIIUTHdFGwkA6nQgghRKd1UbAQQgghRKd1TbCQ+gohhBCi87omWOwjjTeFEEKITunCYCGEEEKITpFgIYQQQoi26Z5g4aSVhRBCCNFp3RMsJFcIIYQQHfeygsXnP/95lFJ8/OMfb1NxhBBCCHEsO+Jgcc899/ClL32JM888s53ledmkT4gQQgjROUcULCqVCldddRVf/vKX6e/vb3eZhBBCCHGMOqJgcfXVV3PllVdy2WWXveiyzWaT6enpebfFIY0shBBCiE7zFvqE66+/nvvvv5977rnnJS1/zTXX8Pu///sLLpgQQgghjj0LqrHYunUrH/vYx/i///f/ksvlXtJzPv3pTzM1NTV327p16xEV9MXMJDMAWOyirF8IIYQQL25BNRb33Xcfo6OjnHvuuXPT0jTl9ttv5y//8i9pNpsYY+Y9JwxDwjBsT2lfwEy6hxzQsLVF35YQQgghDm1BweLNb34zjzzyyLxp73//+znllFP45Cc/eVCoEEIIIcTxZUHBoqenhzPOOGPetGKxyODg4EHThRBCCHH86Z6RN6VXiBBCCNFxC+4VcqBbb721DcUQQgghRDfoohoLIYQQQnRaFwWL1mDeSgb1FkIIITqli4KFEEIIITqtC4OFNOIUQgghOqWLgoUECiGEEKLTuihYCCGEEKLTJFgIIYQQom26MFhIrxAhhBCiU7owWAghhBCiU7owWEgjTiGEEKJTuidYyBkQIYQQouO6J1hIRYUQQgjRcd0TLKTKQgghhOi4rgkW7hD3hBBCCHF0dU2wEEIIIUTnSbAQQgghRNtIsBBCCCFE20iwEEIIIUTbdF+wkG6nQgghRMd0XbCQXCGEEEJ0TtcFCyGEEEJ0jgQLIYQQQrRN9wQLGRdLCCGE6LiuCRb754q9k1MdK4cQQghxPOuaYDHLAR9+YkuniyGEEEIcl7ouWADc3kg7XQQhhBDiuNSVwUIIIYQQnSHBQgghhBBt0zXBQh3wVwghhBBHX9cEC+ltKoQQQnRe1wSLfRxep4sghBBCHKe6MFiAkfMhQgghREd0Z7BwcmJECCGE6ISuDBa+1FgIIYQQHdE1wcLFrUGxnMVIU04hhBCiI7omWDB3+sPhKwkWQgghRCd0T7DYjyc1FkIIIURHdGWwCKSNhRBCCNERXRMsbCtMOIAk7mRRhBBCiONW1wSLmYIPQFXHuKmJDpdGCCGEOD51TbDY/yohxtkOlkMIIYQ4fnVRsJjlJFgIIYQQHdI1wWL/fiBaeoUIIYQQHdE1wWL2RIi39Gk0UmMhhBBCdELXBItZKqiz3N/R6WIIIYQQx6UFBYtrr72WM888k3K5TLlc5qKLLuLGG29crLIdscFgvNNFEEIIIY5LCwoWK1eu5POf/zz33Xcf9957L29605t417vexWOPPbZY5TsyTkbIEkIIITrBW8jC73jHO+Y9/s//+T9z7bXXctddd3H66ae3tWAvR4+a6nQRhBBCiOPSgoLF/tI05Zvf/CbVapWLLrrosMs1m02azebc4+np6SPd5AvbryPIBd7Ni7MNIYQQQrygBTfefOSRRyiVSoRhyAc/+EFuuOEGTjvttMMuf80119Db2zt3W7Vq1csq8EuRV9VF34YQQgghDrbgYHHyySfz4IMP8tOf/pQPfehDvO997+Pxxx8/7PKf/vSnmZqamrtt3br1ZRX4pahX8ou+DSGEEEIcbMGnQoIgYMOGDQCcd9553HPPPfzZn/0ZX/rSlw65fBiGhGH48kq5QA0JFkIIIURHvOxxLKy189pQvBIoJSNvCiGEEJ2woBqLT3/601xxxRWsXr2amZkZvvrVr3Lrrbfy/e9/f7HK99LtFyYkVgghhBCdsaBgMTo6yi/90i+xc+dOent7OfPMM/n+97/PW97ylsUq30vmvP3GrlAyjoUQQgjRCQsKFn/zN3+zWOV42SRLCCGEEJ3XPdcKUftdeMzJyRAhhBCiE7onWOzfskJqL4QQQoiO6J5gsX9PECvJQgghhOiErgkWNZPjz/lNHuJsnFyETAghhOiIrgkW3+27nJ+q1/In6vewEiyEEEKIjuiaYDHh9c3dN0nSuYIIIYQQx7GuCRb7S8YMD913X6eLIYQQQhx3ujJY2Fjx3e98u9PFEEIIIY473RMs9hshywLamM6VRQghhDhOdU+w2G/wCoUECyGEEKITuihY7E9hJFgIIYQQR13XBIv9e5g6F2J6ejtXGCGEEOI41TXBYv9TIc6FBN6Crq8mhBBCiDbommDhDnjky+VOhRBCiKOua4LFvCuPKcDZwy4phBBCiMXRNcFi/zYWyjnqjz/QucIIIYQQx6muCRb789XpxLu2dboYQgghxHGna4LF/m0sRpZPdKwcQgghxPGsK4MFq/+lU8UQQgghjmtdEyzmNd4EUO7QiwkhhBBi0XRNsHAH5Ir+U5sws6szhRFCCCGOU90TLA6osRgdWMKuB77ZodIIIYQQx6euCRYHuuP0S3lDelGniyGEEEIcV7omWBxYYxETMIkM6y2EEEIcTV0TLA5su5kgVzcVQgghjrauCRYH9gEJowZv+9H/Y9sTj3akPEIIIcTxqGuCxYFVFuc9eiev2vgAX//cpzpUHiGEEOL40zXB4sAaiyVj0tVUCCGEONq6JlhwwGXShyl0qCBCCCHE8atrgsWBNRaeDjpSDiGEEOJ41jXB4sA2FpYkm2qky6kQQghxtHRNsDiwxsK6FIBcX//RL4wQQghxnOqiYHFgjUUWLPxCsRPFEUIIIY5LXRssVKsxZ60+TXLt60m++audKJYQQghxXOmaYHGg2ZhRr43h7X4I77G/h+mdHS2TEEII0e26JlgcWGMx+zCw+037wilg06NWJiGEEOJ400XBYv5LKb9qSza9oagl+/UMSRpHs1hCCCHEcaVrgkUU5ec9DpdMz91/anKIuNq6KJlNjmaxhBBCiONK1wQL6/a9lG/wb+fNm3i4yKZ/HCGuakglWAghhBCLpWuChdtvSO9vq3czxgCJ8WgEOeLWqZDGpM89X/1Drr/+etJU2loIIYQQ7dY1wcIecK0QUPzNv/kY1/7if+DHp56IBbTvuGD73/Lkk0+yY8cOAKb+8R/Z8xd/STI+ftTLLIQQQnSbrhnv2qr5Gemj6n9CT3b/S7/w27zm6Y/S83iD4vC+ALH9e99j8x9dw8DEBPVHH2H1l750NIsshBBCdJ3uqbHQL/xSHj3hFKq7coyNlQG47rrr+PLdd3Pz5W+lnstRve32o1FMIYQQoqt1T7A46FTIfL1p1itk9OYS/dPjc20s8tS55co3M9nbu+hlFEIIIbpd154KOdBn3v8bfGP3OEuef5g3/eCH3PmvXsev87Vspg9b3rSMZ266iXVvfSv6RWo/hBBCCHFoCzqCXnPNNVxwwQX09PQwPDzMz/7sz7Jx48bFKtuCvNipEIB//alP40yISVJ+qfHNefNWhzv59l0389RTT+1bZ62GbTbbXlYhhBCiWy0oWNx2221cffXV3HXXXdx8883Eccxb3/pWqtXqYpWv7X5wxhp+/NqlxPHBp04u4r6sK2qSsPXDV7Px3PN49l3vIk3qACQTE4z+1/9K9a6fvuA2nHNUf/ITqnffzdh117H3r76Ecwde2F0IIYToPgs6FXLTTTfNe3zdddcxPDzMfffdx+tf//q2FmwxrJzZxpLX7GLpWXu5959GOG/LXm4evJTT/vERtGdZ9q7d4MPWP/wDSnu+RXCKZvzJ57n3+rdy1qv/hufe+S4AJq7/JsXXvob6Aw+w6kt/Re6003DOoZSi/tBD7PqjP6Lx0MPztp0/81UUX/vaTrxsIYQQ4qhR7mX8lN60aRMnnngijzzyCGecccYhl2k2mzT3O50wPT3NqlWrmJqaolwuH+mmD7L0Rw++pOX+r3t3Vq5Jn3W/M7/WYuUlY+xOB9mwOhvjwjl48hvLwCnwDcSHHlRLn/tmckOXkY7dRPO+2w677SWf+m3Kl/9/NDdVyJ3Ujz9SfEllFt1vtjGxMabDJRFCiEObnp6mt7f3RY/fRxwsrLW8853vZHJykjvuuOOwy33uc5/j93//9w+afrSCxbvd9fw/9W/mHv+l+1X6mWRsyzCjd5/D62//F/wkoak9wtZ1RNZdPkrYm7Dznj6mnivgaF0stTQMldFDbsd6Cp04HPCTDafxo/7z+d3BQdTGG+C5zXPLqaHV5E7+V5ihkzHFGDu9GeefgNdfpHjeCD2XrkR5r7zGo404ZdNohZ6cRxo1MY0ZVq1ZidaGuJFd2M0LQ5xzL9j4NU1TrLVMTEwwPj7O+Pg4YRiilOKMM84gCAIgC6R7du9mplolTVNOPfVUtNbUp6eYHN1NVK+x9IQTMb6PH2TbrVarTE1NMTk5ydTUFFNTUzQaDc455xyiKGJqaoqZmRmCICAIAqanp5mZmWFmZoaRkRHe8IY3zD2uVCqUSiVWrFhBvV6nUqkQhiG16Wl2bNvC6O7dTExMUKlUaDQjevt6GR5eysz0FFFqWb1uLcPDI0xMTFCtVkmSBK01hUKBarVKtVqlVqvN3a/Xs9NtGzZsYHBwEKUUq1evJp/PE0URa9euJQzDxX+jhRDiMBY9WHzoQx/ixhtv5I477mDlypWHXe5o1Vic8Z1b2dvTN2/af3L/gfU8w2bW8x/VfwHgv7mPsJSd7N2zmieeuJRTntjI7StezR3hKt75+O38wtYHGT71Wep7DXelBf7bu30u/+kwlzwxybKpfW1JKqFPX28NKoq689kTFugbqlD51wnJSsfXN/4sZww+wemDGxn6E4/g+fkHW9WzDDezM7tfXIIaWoGqVPGWnU7xkotJJvtwdUfp4uX0XrkepV+4O+2Rmpia5t7Hn+HJZ7cwOllhLAmYmZ4hwjCka4SeYbqZ8HSjhyYeUzZHnYCQhIuqD5DPBYDDDxQFLyWnUvbYEtvcIFb75FVEgSZ5W6NIk4KKeKGXUm42qPo+qT74l7tfnSbxA5wfgNLgHLpRwxqDCnN0ezOWkcEBQs/DpQl9gUez2WTNq87mxPXrmBrbS7VSobxsBf2DQyRJQr1ep16v02g05u7P3s4880yWLVs2b97s/UajwcjICAMDAwwPD3f6ZQshXiEWNVh85CMf4dvf/ja3334769atW5SCLdQ7/vZr3LPu1LnHyln+6Pn/xOo1jwBwlfp/APyx+xgr2Ua12sf9971j3joeSkaYpo/tI//ICdO72LJyDwA9VY9337aCME7Qai/PLtX0Tw0SxhrF/KPkhnc9R2lpA2cBBanTPLblZE68ZwfL74jJxwl7egqMlfLs6SlQyQdo67ho0zZKfhNbcHh7FSSQf+2/Z8uSE3kieh616U6G0jo7c0XGTz6LVWuWUz7hDOIdNYa1R85ETP/4TvrHH6bRr9g7sZOz/7/3MLJqDf76dWz5lx+z6daf8JgpUu/ppbBnO3sHyoTBwo/GNedTUPGCn7e/yGlqLiBQ6WHXZaKYNPBf+kqdg9n6pRcZ1+Rlaf2TMQq00sTWHtH2VNQEZ0FpnDGYRh2nNU6bLDzN6mD350I+z5pVq+gpFmg2m9jU0jM4SL1Vy6I9g9aGnlKJ5StW0Gg0aDQapGlKLpdDKUWappx44oksWbKEqNkkiZo0q1UqM9OoNCVuNmjUqpRHllPoH6BRq1GvVWnUavT39KAUlIaGiZOEOI6p12rUKjPUKhXq1Spxs8kZ555LrljKglFrXqNWw6YxNklJoyZJFBHV66RJTNRsoLWm6BlG1m9g2YaTiZsNnLUMLF+Jau1zZy1xs0HUaBA36kT1OnGjQdSoEzWy+0nUJCyWyJd6SNOUoVVrKA0MksYxYaGwaO+NtSlJFLVu2evzczm8IJwrV74n+47NlXpQi/lvQhwXXurxe0GNN51z/Lt/9++44YYbuPXWWxccKhbTgQNkhXFMmh58UKq0xvkuFicZGNjK+PhKWic6OMvbzT+svRZfOba09pm2mhXJOoq9S/j2hgfYNjJb+7KN9TtLDI37nLC9RCVn2bhmmv9TN2y4Y5h8w+PM6SJrtzlc4HhKLeep06DXrzMVz7/Eu9WKH5+0ivc0HuH5Hf00P1FDl1KW/MF/ZzhW7P+b8TSAx7N2HBZFo7ycYGA9ZvMd9JMd8MrAMIpk05fYjsLOZG1G1qJYFxRRQQndvxYz1oPpX4fqX8Nj3jaaLqGgQow1NGxERTcoph5bcxPs1lNzZZgNAokFbR1KORSQ1Cxe0TBXJdE64NoENBZmYh4trcZpjU9KgiYgpayb9Kk6OTX/yrMLChXQOrjv9zmIUoq1CgmaZl8P2qb4WhF6PoXAJ2c0LokJi0WCfAGrNLue3kgxF9LreRSUoY6iN5enB0U+TRlQioE3vQnl+yR79uIaddCamV27mDAe8cknEdcqTO/eycTmZ2nMTDLj5dgTpTjjgdn3T84F809tpMWehb3eA83+Rtj/38LsxfZU9j+VJjjP37fMoZ7j3NzjWr3OE/t1wT5SP/jBD7LPw6FC0n7bO1K33X3PkT3Rppj7HkIlESpNQBuc1pgwR+ocqlYhGNuFPsKrIiutCXJ5/NZpLC8MUdoQN+rEzQZpFLPmrHNJk5i40SBuNoibzbn5CkWhrx+lFHErlM2GCbuAMmnjURoYIE0ScsUSxvOxaZKdmkwTPD+gNDCITZJ9QSWOsm3GMblCEW0MSRyTJjE2SciVehheux4HFHv7AEjiiDSKSJKENM7KqbTG8/3WaVLD2rPP41VvfAtJHJHE8bzXdLj7Nk0ZWXcC1qbYNGXJmnWEBWmj9kq1oBqLD3/4w3z1q1/l29/+NieffPLc9N7eXvL5/As8c5/FqrF4+3Vf5/41+8p0+aN38drwVjZsyL5wZmss1lS28sHif2c1zwOwffvJPPvMq+eed+/QvTzfk80zacCbdl5KOc7K+e013ybRC/uCuXRTmcF8wpNWsWRPnnW7ioQ6YYWeJphJ2eHKTBcOPnc+kNZYMlpjb6lA04dVE7tZvcdiHMzkYaoAK8ay40Vk4OkVimZgOGdTkh3kNWw+YQk7lhYJCmuIa3uY9MbRxmfNkivZWNzGVn8306bKsupyyvVBVqdD5JzPXj3DhKrilGNNOsSkqjGpahS8kHq6sHE9rMvKeCTHDesUShlQmgnrkTpFZDU16zNNHpopO4N+SipC4UjRNJxHjYCa87H79aYeqE/xv77/hxgcuqcHOzOTzfA8ChecD3FCMj5OY+8YejoLUYnSeM6+5PI6oO6F5JMm6/7+7/GGBrHVKun4OGmlSnDqyVBv8PwzzxA5SPv68IsFtmzZwvj4OIVCgUKhQC6Xw1qL53k8/fTT5HyfQCkC66g1Gzy5fTthENDoxjFWnMsCiHPgeQfPa9VKqf0+WG72tNncfLJlUDhA43D71WJl0158tN4Dt63SJDsFp9Tc1ZR74yZekkKzQb7RwIztwWpN4vlYz6OSz+GMAaVQDlAaL45waULTU9npvCRGN2pZ6FIKpzQqTdDJvpo81/rRcGAN6Szj+ygUSRxljz0Pay3OvvTP77HGC0MUiqUbTiLfU8ZZOxc8cqUePN+f2wdKaZyzWTBqBZ7BFasoDQ4xsHwFaZKw8tQzKJRf+gjMrvXD6XiqCVqUUyGH24Ff+cpX+OVf/uW2Fmyhrvi7b/DA6pMAuGjTI5y1/RlGRjZx0sl3AvuCxazL3I28n78G4KfjZaJH34XnZY0Q/3dxnKA5xBsbeQaY3xPk6/3P4PU9eND2RzyLp2AqVVzaE/Nc0/B4w7DUs1hgNFEMGsd4qsgncP5myyWPOJprHN9aPkjPlGb1aJ6JnpihyYAw1mwdrrNlpMa2JXWsAT/W9FdzjPbVAAhi6Ks4Rvv3vS9BBP0zmrFeR+K99NMc33q8yi07L+Se5CSe7R9gT26Q33j+RpJlAVHR5yZ1PmVqXGoeZ7Nbyf32NCZcwEk4dqDYgyPAkQNiNKuUZcxp9qCxKAyWDarKhAvpVQlVFNMuYDUpDQy7jcfZuQAvTrgYj5WR4lX4875IVaBxyqEHNX6piAo8/JEiE7uquOmISiViTyOmL3GUYkcBxU+I2YrlB8R4jWle99Q/s6Q+yUSuzFiuzFiul7FcmfFcmbF8mZkg+xVUjOtU/Ty5NGbI1jnJzdBvG5SfeZIAy1TfMJPFPiZMjomgxHhqmMyVSHR2MDxt7DmmgyLTQYGh+hQnTO2g4ueoBAUqfp4Zv0DVz9HrYk4ZDInjhDPSSZJ6g/HIMpkoojjl/B2P4pKUqp8jMj7FuM5AYwaFoxA3GGGGaqFIX3WKXNQkaEYEUcSupUtp5kJMnJA4zVj/AJViCS+OGZkZI4wiTBTjUkisJrGKar6AK/r01mYoRg22rF6NSVMay5Yykc8TxDFes0nQaODX6+QHBwl9n8KaNbipKezEOGGckIsjdhmPhwYGXvLnTxzMJBE6iYg9wCm8+jiFNMVYh3YG0NTzEdbF7BxQJMpR8zT9haHsFFtsiVyVmaDKtI6zKsY0ZX1uOcN+D9ZGlLSHjlKa1QpGB+RWrCO1lpLOs2LlGhJfU4/qVGszRDbB+g4KirE9O6k1q8Q2JrIJ9UaVRDlSLCnQ8BvEJDinKKo86wsrMGh2Pvgw/kREqh1WQ6odzmh6kwIFlccFHs7X4MMS28cQvTQbdWYmJ9Gej6cclV07MDb7bkvNvh8P+6LXob/3HGThUmnc/iHOWVSSgFL0DI9g/ABrHQ6L9gLSVs0OzQZpHJNam9X0tGra+oZHMFGDfKnM8Lr19AwuoX/5Cmya0rdsRVZDFTWJmk3iKCJqNgmMQStHGscE+Tz9y1Zk627VCM3ez2p+WmHogHlz95OYJM5qiPY9L+btH/mttp+KW/TGm0dqsYLFL3zxy/zzaRcA8KYn7uWk0W2sXPkY69bfD8A3dv4d315emvec/+V+HkOW6H/0yKu59PR70frghJ8kPs9suoAgrPHj0XP40fQZhMM3osNRThvYyL/qSxkODq7JeKahWZ+zPM4Z/NC+jrfpW1jhNpPYhB9Me9xR8UnNEpJgLXF4An7jcbx4C9YM4jeew5qAODwJL96KSScWvE9y1tFonZYYjDWxgmnPsjqOCa3mhLjBTaV91YkX1+o87/ts87OD4xuqNQzwK1PTbIhinvM9ngkChpKU+5rnsSUwqGAvq22F91d2UVQR/zF+Pw/ZE1ivdjBFkVvtOQsu9/58m/IrMxO8i4BcbS9NYgoDJ2PC7LPjnCN1MZ7e1ybBOUdk69TTCvVkhlpawVc+Pf4g9bTCqFfC9wdp2jphWqVX5/k/xudJW2M8rVBIazR0Dp+YFW4P/bpCj2kwGpfBWobdJINqiulcPzfq1zBNCZwjZ5vk0zr5tM6U30vVKx66mt85fBeTTxvkbIN8Widnm+TS+gHTsr9lqpRVnScHTgej2Rn3oowi0Jayq+K5mD5m6E8r+F5CzsTg+4QmoaCalKlRos4uBhhzZcrU2On62c0gdRcQqIRn7DJCFVOiTo+q0++mGYqmeb4+jPEtfbZCNc4R1T0Kqo4XpGyyK9mT9tETVUErllXGWD29i0QZUm3YEI3SH80QxBFeFOPHMV6aMtXby1RvGZ0k5FrT/TjmyVNPYe/gEF6aoNIUbS1eHKPTBG0tOo3pbdRRPhhiZgaKpGgipzCqia9iAhVRSGICl1IJSvik+DTIJzG5NAEfpou9xE7jAKMTPBXhEWO0w1cxxThBBT6p8bAOfJfikWJcgkdC7DymXJFK2EudHE0CDBZPpfjE4CBxhoAYnMvmuwRDilGOGiF7GUThsNrDKYVPjE/CXgZIMXOPPRJ8EnxiGoTE+HgkeKR4ZOv0WrfWh2vueaMMobHz1hPjEePhkfIU60nRWdlJMNisjKTUyRHhY7DZaUyyOqAKRVKOrEu0SRKsUjitUK5VB9OqAVoQ5/CSBNeqOZq9za5HWUvQbGK1xmqN01mAcIdpq6Swc/vQzO3btLVvkxecZ7DZ++IMnouJnc+UKqOVwyg7b59m+zKdP81ZjI0wWBI8GgRoLMZZtLJoHBqLVg6NI8GjRo6Gys19Js3+ZVIpxmX3177vSyw94dRDvuYjddwFi89+7nN86dKfBeBX/+Uf8W3K4NDznHZadtXS/zrxdR4YmF+1+mvuf/BGbqFBjrAJKmy8pG1955nL+cmOV/OOE77PxcvvPuQyFs09XMg/8bM8qzYc+QtrWbPr/3By5RFGJhVLiiVu71/Gbu9UquFqelzM66bu5a6+k9hSOJnzJ+5gdTTJmyYeYXNhJZvyq9gRDrM9N8y0KRFrjxkvC1lLJm+jomdI/RXkp2/Cbz6OAqzuIfFXodMJvGTnvLLMdb89wG9MTPEbk1Ps8jx6UxgLR9icX87MhGYyykPexw8sqye28nC6FlcKOCHazlq7i6rJc793MpVymdAkfDl5O5MTIUN6huXpHvrDKmvUDp4NV/JcuJJ8mKDzimC8gjdT4w077mBdc5zQb1L06pT8iJLXuvlNAp2yp1FktFEi78XkTMLG6SWEOqHoRRS9CK0cORNT9GKKJiLvvbTTXnuaBcaaBSajPLH1KXoJoW5Q8FKery7D+BrrzVBWMdNRL1MNR15H5EwWArK/CTm9737eZNXgSoFRr9zuLrHV+PuF8ckoh1EWX6dE1uP5ah/TcUgt8fG0JacTApMS6pTUKZrWI9ApYWt6oBNCnc6blliNVm7edkTnRHhM0MsWVswFF9/NBqAEz8WApeECfGXxZuep7GCsSam7HLYVapSaPTBajLJYFBVbJHZqbppRLjv4OkPkfNTsgXru4J3dd07hqRSlHJO2RN2GGO3mH3hnw5iyc2GvG21+6z+w9rVvbus6j7tg8bnPfY7ZPgEaCBqD5OpDvHXDM+QnTuQPT1jPjcvnNwbM24hfV3/GF/k4V/Jt/nXromQOeJLTWMkWSlQOc1ZzH1sfpEo/praUb+p384OB1W17XQdSzuJe5IJriyE//T3wRoj8paTeMsBx+tbPsaUwTOotJ/WXkfrLSb0RHBqUB+ql/bIZisaZ8Mukqj3XxFvZ2ElN5/nt57/Cm8Z/yl6/n7Ggj4opUNchu4NB1te38va9/8JoMMBoMEhvMsP6+jZgfmhKnGbClfFI6dczxM5QcT2kaIb0eFvK+1I4F+Dw0Ko299hSIGtB4GFdgdQVSF0OKAFlLEWsK+Io4FwFmAQmyZvniW0OqOJoUDDTJC4ksSGWPKnL4akqoZ4icTkiG+CrmLyZyH632RwFb/KovfZDyfZHgKJG1gIhhyOPdQUceaBJ9k4GOMK55R0aTQOlIpwLcQRYQpwLqSYRjTShnqbEFrSKsx4/+EAIBDTSKkVvGk83CFRCaGIUjsQZmmmCdR6BtrhWPUCgU0DjnIfDoz/YiyLGZg1E8FSCw8M5j95glNQZrPOJrSF1htT5WOejlSXQERaDc37rPfdx+ECAdR6OJqkzeCohZ6ay19t6jdm+UhhVx6iIQG9Bq6i1LzW2VQaHh8JiVBWlHNYZHAaFRasja8B6LHFOt/Zptm+zz41/iGlea5820KqCcwFKRRg10VqPaS3vAd7ce5zdN631ZdNxHuDQKmv3lT0n2+84L/s+xcOhMGoCoyZb79XsOmbL5c1t0+Gz63U/z0lvu7yt++e4DBb7G9p1CQrFk2c/yic3n8NTgeODFxY5d9py69JD9zYo2gpviX7A09XTeWxwX0PQX2xcx0mNp/m73l+inwk+wP+gSJWoWuQn26/gjt4T2Th8HvaAARrKcYV/u/27fHDn1/n7kbeyMxhifX0bjw6sZWLAcEb1KU4NH6RABetpauQZZYQf8HaWspO3jt/BPbVL+atV7z2orGvdM5zEk/xAXcmw28VpPMp2VpKnxsPqXABWuudZyk4GGWMJuxlhFzkaaCxbWc116tdZ755mkDHuUa+Zt/52BBjtIqwKXnzBlsBGjER7iFTA7nDJvHm+jRiJxlgSTTAYTaKs5ebh1zHcHGM0HHxZ5TzQkt27oJpS8QpEXoDe04TUkZuuEkUa5bL3uUyVd5qfsFLt5UL9BJOuyDhl9royG9QORtQE466HMcrEzuPN5n72ul4mKVEhz5jtYZIeEk8zRYHdyQB7bB9Trsg0RXJEzLgCkxQ5I9dkVTDDsD/BhtJuYi9hGkdfbpw1QYP+5y8nP3UCTsWYJKuNclisVyf1ayjr4TX7Dtn4z6mE1KtjvSy0mDh7vvUaWNPAenWs1wCnCSsrsaaO9WbQZgepF5F6CSb1KDSnSI0jMQqtxwjcHgK7l1wDVJrHqpBUe6TGw+HwEofVhlT7pMojNSa7aZ9UK2LfkXox2jqwxWzdXkrqWawXYU0TpyJA4UyCsj4mKWBNE2V98lPrsaaJ1REqzqGaJVJTI9E1rGlgKoOYtEDR9KOswZoYpyOcjrFm319lDTrNYaIevGY/yunW/NllsueBwkQltA1wKsXpFBz4jSF0GuDXlgIOpxOcjuduVscoNE7Z/aYn2XaTIqgUpywoizVZGNBJjqA2gkrDwzbofCEOizM1sD7aHWrgNcuBl5JS1DBqL0ZNEuqHsvXMBbZwvxDjoVUVnMqmt4JN6nwUudbBuL7fwbZ1YGwdUI0aRdHgwAMygFaVVvnnH6j3/XU4AgzjeGr33Lazde8fFIL9Dsb7plmnSF2CdQmpS7EuIe/1YJTXepzOTd/3NznoOfuWTSj7g2ilW8ulpDarjQxNT+udSHEuxWKzv8627meNThUKrTQ5U0IxWz4LOHwdzr6bOGdxOJzL2ofsvsDnHb941YI/Gy/kuA8WS3Zl1y75329z7HraUZqawr6+h3H/yAb8MbZJqrN/gL9U/wrL94zz97l/zabhVQct+6axu3jb2B28e/fNFO0Ln14Zp5e9ppf1bKXpZVW+P3n1vkZvaWJwHjzDBrayhtN4lGXsyL5KXqCb3uFOVxxOjQLbWcEeRljCblaxFY3lS1xNkxxL2ckIOxlhN/+HX2a7WkXBVVjOdlawjWVsZznbWcIoGkeeGv2Mk2KYpkwv03gk7GYEBfQxzhR9PM3JFNK9DDBKkkwx6KU8UTdYXSKnfSrJDDuTPGeG0xSVZY2XNfqySmFwqMTx7V2v547pM8n7E+w1J5G6IjMnngCAsil+HKHjFGch72rMlPpJTStcWscLjth1CGsqT/Oq2v2QOp6pnUBVlRhNluB8Q1pXqFqCii1hUsNqQ1I3kLoXfT+Us4StdhqhjcjZJoFtUjVFUmXI2Qa5tEloG602Gdl93yXk/ToRAb6JsSVNZHO42DIeDpAmml41Q5BGEBlUkmLSFOcgzRn6l00RJx7VoEhd5fDSlCFvjDj2SCNDn5nC2IR6sUBsPfI06FEVksgQuoh+bxKbaGyks84cYYqzijTWpJEh19/EKybk+5rYRBH2RWjjCHsjUGCTbFkba4znQDm8fNq2oUicJStfrOdtK3uc/U1b81yq0Z4FBzbVuFRhU4X2HH4xzpZPFDbO5uUHm+SXNLLlEoVLFco4tOcIeiJcqrE2mz5784oJSru58rhEkyYa11rv7DacU5gw2w9udh1WgXL4xQSlHGkU4igR5mOcTbJeEM5iY4WtFrEu673gnGvNc7i01YEmUZhcilYezmZtk5wDE6QoDTbKgc1ef7ZdsLEhqQfYlNZ0h7MW7VlMmB0YcSoLFa2xfFCGuJEjjTyUq6OzwyBpolDOw2iD8gDlmP0PQKGB7DsubhZbHX4SfKXwtZe9Tpt9XrQ2cwdVZQ1KZQdaS4rDzXU0cs6ShSYFym9tybUOzRblUhS21dLzUIfGF/tQHu5weqjnucPOO/RaFPvCntvv76G/W057y7/mil/7pcMV9IhIsGgFi83LU3YXC/zCWb9ErEO2sobPqWvatt1ZJ+3awim7nmfZ1BgK+F3+HIC74kt5yF/FMHvZxjKm6SFPHY1jZzhENczhlGL51Bh500/Z5lnnFP7rPz9v/VEzTzyxhvzEKYyMnU0hKfP08pvwvIhydQ0FpUgKe8hNr4fJE0n6Hmdb76ME67Lh1uvjq8kPbNm3wtogFMYAMFFP1uq82YtKCui4SG3k/n3LOoWKC7hg38ijET4+cda1NfFp1ssUe8awVpGmPkkSkstVwGUf+3pqqCSGemooG8tAvt729yBx4M0OzwA0CQlpHvSPzqIYZQTqKaPb+thSLbAtDvDdSp5cdzFBNI0fVxjrW0EjzFErLG1L+QamdoGDRlii2Jhh9c5nOf3xe9GpJfECBifHCFrdBY8XLxSAI+NTCwtZwzWbotMUzyaY1NLMh1inqORK2QHYZo3WAheTo4FJU0iANBtrRYjjzeDrLuGX/90n27pOCRa75l9tdd3bfo+wvAsHfPe5T/G19VkPkpOer/Omzd/nqSXruePEM4h8zUeeanLaeJ0bZ27iH9+SXWfknVtvZjpdyq1rX7VvG9MTXLLpIUZm9qKyM5OHLNtPVoxRK5xF78yzqORJrDdM020hKl3O6pkiw9PjPD8wyP3LQnrqY/TRxwcmNrLOTLKltoRzdr2GHarC2niEZ3s0tw4kPOPBjM6hHQw0Y06IDW/fHjOeOMYTx2Tq2NfUbXY0Skt+4FmimRFySQ9VC2tzCY3Uo5ZC02U3AE+n5EaeJGkUmbRLSOIS5bhKz6p78QrjRNUlbA88nskb+uJepoNp1lRz9NWGGaw2eTJ89kXeMUcQ1gi8GqXyHpomxgtq9OVrxI0SynqEQYXB4S1EiSbnZ68msVBvapoNj6RhGBxq4PsHf4QbkSZJFMoqiqV954YPN0YTQHPK5/kfLc9+sVpFGhmaUwE2VdlBLt/DLa/7GZ5feQLaWvKNKvl6jXyjShg12bxqA7lmg6lyPwA6TbELvKhYeWaCvqm9jOx5Dj+eYWRvlVSn1PIB9VxA2ByjPPUsiWlSD8FL8uSb/Vg/wK/DkulxEpP9KvMTTWoSYp2N5IDvUF5KqhNMAkmaJxcpUmPpnzGkGmIDieeIjSX2LJHv0M7RPx2SGEfk6axtvLHUvICm6yXWAbFRpArCKAAsTTeIZy3leJqhKAuwVmmGo73YrOL/oNc+20NhsdhWkz+HJlEekfaJtU+kAxLl4Vyrq6KCRHkkyuBQ5NImPjGp0ll7fmWIdMDq+hZ8F5OqbFqiDKAIbETeNlCt394pWS8ZqxSeTfFd9nmMlSFR/ty2Yp0NZZ9qD6s1OknQzmXbVVmfAoWjlFTwXIrVGp+IMI1wqFY5NCkeWW/U1jQMsfJIVNaEsaFDktY5+yLVrPYk63uAc4ogjVDa4esIrSyqdTMqIQwbKJ3itEUZS6INfuJD5LAOKn6ORGfb084w4Kbo92fIBVmX+VgptFKUggjfj4itJqr62FSRKE2qZv9CqhTGJhRdE6ccaIeb66YK2li0dqSNbIwbq0GZBKvd3PMTDVZblLZo40i0I1QQ1rJaGqtbFSzaYYyde2y1a9VjALEmUZAoSJUjIZsfGoeu+lgLiXYkCjzlyKUaq7JpqXKkmqwrrnat5RyhgaBusCrrckuiMVH2um2rPAmOuPXcPIp8Lfs3mirXWne2DRMZTKSxLquLma3IvjT/Wj784T9v678hCRYHBovLP0vYuwObBDz1D19k43KfTct8rrh3hnxzN1F+AKMbnLlkCataZy/uGv8T/u7UtzI8totTn36I0aFl/OiiK9gzuJQL77+Nk594hId6z6Y3Gme0sJxCWuXMoZc3aJGzeZSug9Ogsi9ZZQ1942dn1Ys6waQ5UtPAi0ut6sKjy7kYpbKR9HA1Gmo3D6z6CTtKD9NTN5RqHr21kL5G1j2z6YfkowQ/SvATqBVDvGZCrpkSJNnHr+kronyZfOyjkiY6aaDcvgGClLZoz5FGmnm/cZUjKMWYXEpS94hrHoqs6ni/EqM02RdTkk0fOmOC4bPGCEovrUFaEmmqOws0Kz7VmZBYO6oVn6JzuJyDwBLnYuoqZaypibRHkE/ww4BKMMKm2ulE8Qxhs8Zk3wmM9a9lury21ZZFYU1ugW9CBIdqv+JilItwKlufslVA4XQIKkCnk+AiTLwb5Rp48XacCnE6h1O51t8Qp0KUraLtNE7ls8euhrLN1jL5+c/ReUy8Ay/agnIRyjUIYovVASYdxeHw0zKRCbAmawypyaNwhFGTxBgSE5DoAJSHcSHa5Ui1hx9NMrDnXhJdxMY+xXqEVhofTWLyWKXx4ipVz4O0Rmw0sSmTBBqrPVIXkqQRrjGNoxenffAcpjmJsjWUTkDFKB1Da1RZGw3hkhJKRWgd4UwEKsHZHC7ug7iE0TGpisDse75SMegYRZQ1EDUx2BCcAZWAzjp8pjoGPFxaQqk0m9ear1r3s78Ol7YGH1TJvGWVSqE1YJ9L81lDP2ey6ViczWdHSVyrcWEKKs3K2lqPUkm2jrntJdDqVSFe4Rxop9FojDPZ/f1uv1xbwa99/Ott3eRxHyxWj76Kuu2fezxyxjcpn/Av7Lr/F5nZesHc9DOe/lsePfFX5h73aHhTOTv/vitKuW37f11QOZw21NacjKMIXop7gSuV6jRA24DEryxoG/vr330RnsvKu6ds2DrksXXIY7ykWLf5B9TDkM3Ly+RMgYQKfZMllo/nCZICS8eeJ3KTRGaMqVKB55YNkKhtnLDDJ2wa+mYi+mcm8KMJ/LjBWP9ySpVxwni23UgALHLVvQpRugdnKyhVoOoVqZkie0sVBuq7Ga7EJNpRD1MagaXuGyIvG5a5GDucq7XmOVIvoO75VAPN0hlNweWwviXsrXH2CdsZLtVopobIKQIUoRcTmPb9gp6o9DE1tYRa7DMTB/iVYQI/xjMxdXKMFgZ5uP9k0IqGyzPm95NoDz9NCNKYyPMZzQ8dtF7PNkm0XPn0SBRshWXpDgIXU3A1FJZY+VhlKKR1fGKaLkeiDHlbw6QW5RQlV0EpR6w9IqOJtUesfGIVkCh/7n6TkIgA0xpnYoAxhu2urNujSuhjglR5NGwuayPjYsK0QYkqJ9oniZ1HTzyJ1YpUecQqoJoWiJTPWFykbgs4ZbDaIzFZkAqJ6aECShEmDeqNHLELqbmQRBucNlgVMNXspR4XccYjMTGBrWc1r0aRaoVVPna2d5fSBGkVp1IaLmitx8OQYG1ClewaN6nySEnRxDjlo5RPqnwgxSRVrFY4ZVDKa/Uc83DKw2kP7SK0c/i2Ac4RuezfsULhp01QBtsamQSVjVFhlcEqk+0DpQnSGsbGKN3qVaENKZpUea1lDE4pjEvQzra6xrbGuUDjVFZrZVEkZK9fO0s+ruLZmFzSwGlN2tq272JyaQONI4wbRDYgmS2f0lhtskbwCnJpE6d0q3bLI1VeaxndqpVSrcbMrdEuWu1GckmEcSn5pIGDuWVsqxasmNQppLW52jOrFfm0zs/deysf/MO/aeu/l+M+WBxYY/FSaWLe0Td/tLKnK5u4f+93Mf5JpNHDC1qfDUKs8bG5AiqJCJIVJGoc3y4jSTaDnSEJ1kCuQlos4LTB1GbwKlPoqElt7SnY3AuPnpZWq6gwRyUM2eIFLN+zjWWj2wjiCGcMzjp2jKykEMckuTy9E3uwfoixCSaJsV6Ajho4z0c3aiiboo7kY6FKKNOL0r1ZGEj3Ah5Kl1uPd4PKHltTpp7voZmDcOZZTFwlyeVp5nPkijXiAU29N0ffU6fTM1GkEThy0fyz8RMlhZcm5Joa32YVz41yjedPGidKCzSMz5nBnQylo+SaIa5Ryhp6+TX6N9yKs4Y0KpFGRVwwRdWrMdXI02iWyUc95IMqpdIeKo0eCrkqvnb4OkEphVIWm/rZzWqUchi/RhA2SFNDmgQkqUeUevSWJtrWELFGgTEGyVMnT50c9bnTB7tYSkSIxlKkwgxlYjxCmoQ02cIaYgJ2spy9DJHikaNBjgYhdXI0yNMgpMHzrMMnas2v0yBPjUJrmWy7uVYZPGI2s55dLMeiiQiok/3K3sNIa9lsvbPPD8nCaZUSGktIk+ww3Jgrb0iTJzidTZyIxpLgU6GETzy3rpAmFUpEhMzQk526mFtHto0KPYwyQqo8fNckR4MGeeIF9FgS4ljz4Tv+gc/83n9q6zqPu2Dx0c/8MQM6axCYy83Qs/nKwy6rbYxD4fTB4yacGP8N24cD3uJ+5aB5N07FYKs0bR2t+0ntDEr3gqvzfP8Mq/Y2iSt/P7e8Mkvxcufims+QJBvnrSvUeVYUTqTk95O4mP5gmEcn7mA6Hsu64qmAodxKGukMyi9QLqxgmVnK9nQHI3oJD/VMMO4fvseJNzNBmivg/CP7JWuTmCRNUMZDN2qkKKbIRrQrVCs8deIZPH7S2UyWB0Aplo0lbNht8RPHTA7QTaxpMDJVweoGe3rKON3EqZTpfIm6H1APckzni/hJTDXMEyQxifGwSpFLInrqdfJRnVKzTilOWT1mWTbZoBQ3sCYi1RGxjkixGOuTbw4xWF9JUzVxJibSTZJWl8BCNICzHk0VYR0ELkCZiFjFNFWM1RFWxziT/c1uEbShStiYiIHBbeRyFXK5Cj09Y3hehHOKOA6zUzfQCiM+1hqKhUlAYUyC5zdIU29ufpqErZtPYj18r0kYNFA6mRtMSusUlwR4QT1rgZ96pGmATQLS1MPpFJt6WKcJgjrGxPhehB/Us94GqU+S+KSt8uTz0yiVtab3vGyMiDT1SVMPz4vI5fY17LWpIU09bJo9P7UeNs366s/ezwKZhxdUUTrFJgHO+qRJkAUzm63DpT6x1QRhjUJhKvv16jfwgwaeibDWJ038uWVtGuDSEJcGGBNjTIxNPZqt10/qQRKSWsOM6eHZwioSbYi0R0Pl8FNHkEAlCEm1JnQxARFNo4kChdYJ06pE6gyBtXg2wUtTgtThJeAn4CUaL1H4CeRcjGezdhYTXsCunpDYZL9Eq14AVuFbR6CapErTCBVjuRJj+ULrOkDzv6M8mzVgDYjxifBtgt9qt+HZFOsMVZNHO2gYn9jo1sBVEb6LW8tZQlMl51UJaOKRUCdPisFzKZ5L8FyKr6LW45QqxawxtG4QqDq+S9HO0iCHZ6LWSKExHgkNcmjSuTIqHDNk3/Wzy3hzI4vGeC5BOWi6HLELqKoCvm7iqwTtUuquQIqHR0ygm/vW4RJ8FbfWFVO3BSquJxu10lqMc9k8r5GNRuksxjqUIxuB1IXELiBrvuHmfkylGAq5CUJTwzjHlOsjIqTierDOZOt3kDiPKj04p6ipIsrEBH4VX8WtUTVb23SWmitg8bL9SYKvG/imkY3eaVuDdjmLcSmeahKYCI+EGgWaNseM6yV1Pmb2dVmHsY6GKzCjylQpoazCc64VqXOUH6vw3373d17299f+FuXqpq9kEy7HAFmwOOnkHzM+ej7N2sghl1257UfsHrmAZpidKnntnb/LjmUX0zOzhSVjj/DIWSdQWzVDwZt/tckren2gr3UDmD0vHhA3UtL+PiLzTsoD2TCqzc234+UGSWZ2M9F/OUN9p6HQGO3hXJpdYGv/chX3jZ2RuhRziAGm1nAiAGtTyx36SSISyrHhkdyuecslPf0HPXeWcq1Try9Aez6B1+qSWerFAEsASmCHhljrdrDqqQki54ECrcp4yicfNfCmD+6JsWr6hbc3b9tOY9WhT0HEHkwc4lOb6Jimt4XJ4paDZwKThW0vvQAH8J0hdD6xSvGd1xouyJHDx2KpqCY555PDJ3Q+OecTku07hyOMfcLtr8J3Hnn2zTc2G/wmcZYAQ6DU3LltvV/bGYejSYKPwRxBm5pDXcBqStXYqSfwnUeAISYlVimB8zBoaqqJdpqAbL7nDE2VYFAEzsPHw3eGAK9VJoczzda4Ci+9jC92ca3ZZY5krIYXYp0jG7oKTKs6yTqHXuQLSsWudSVgl920mi1DLrswGq0emtQwKrvqxZQPuRS81OHNK5+Pdd4hy+yc2+/aTtl4D6lzNMn2p2aQ1DRwyqKdh2c9DIas+Wn2+dYvcZ9bk/2IUNYjCSdRzqDSAGV9nE6wfhVlvawbqPPAetljZ7K/h/i8HO49tzo79Tr7vAMfd9q+JvPqRT+zrtWM+VCsaYA12T46wtf1dz0/PqLntUPXBIt741WcYLJRz7ROKa+6mz0b33HQcsOj97Fu83fprz3LjuWv5dL+LzHehPWbvzu3zHnP7eSm5C+IPUPJ6+fKVb/+otv3cwP4QG5g39js4drsdIwpL+fADov7hwrbnEaH89Pf/qEistPZP3KnqKdP0xOcg0FzaXza3DKvbpzG03oXm80oHoYltsyQ7SHAY0bV6Xclyi4/90Wu0Vjs3F+FoklMXcXc6z1D3gVEKkaj2axHSfY70GtnKEYHBpfa/PI7TY/LZd0+VUzZFZhWNQLnMa1fuKvpbKjIOZ+iyxE6D6scgfPwMFhjsUqR6phCYsgneR7ztpO2nhc4Q94FFFyIRrPdjKMc5AiISLBYcgTkXUDOBeTxybvW47nprWmtQ+fhpGkMLsXZpNVlP8ClETZpkCZNjHP4vSsP/eTZ7515AVLNrdcBnvFx1mKsJbYJDZuS2hRPG7RSpC4ldgk2jcFaDAriRjbIjk3xtEajMMbHAtamqDTCKFiVxvj5PpR2RAqMCvDDEsY7uCHp7GA91iakNhsEyKU10jTGpjFaGUxhEGVe+EvQ2RRrIxKXktqEunFEymZXpMRQ1IVsAKA0pqlSIs8Q6Dy+9jEo8i473CVkreZRCs9BjCMiJcGS2ITUZS3qA6coK58iwbwDsFYHf10feIDOrkOTYF3aKncMNiEMyihlcK333dns9Jj28lhns/s6a9xsXZrtO8CYAL+1De8wx5wDP2kK6Jttw3yIAHG4IHSoC0YapSjMrRWwhz/FeqhQ4ZyF1qXlae0TBSgbYJp5cClBrTe76qdLwTWzcTHItTapsC4B12rg7uVxNgU/ByicTSCNcTYmbY1Nqk0OcJh8NraPtvNPX6lEg03A1rE2IRtgI3tPcLP3U7DpXPuJbP8YrBeiTYAKe9D+4feFm12vsyg/f8C8tLXNuHU/mbd95eXJ+tzbVmN3C85mwS0oYvID2X5tXbV339V7vdb9pDV+h0N5h699dq3yZfvd4mxKuadzh/euCRZ19u30wG9QOPVm+sZgZno9u6LTAXjTrVcD4F3g2HKu46cjVd792E72BCsgBtO6RPbIdI03PLmD2855J6t2jzPz0EcpXfmnxM/dhsr3g7N4y85G7TcyZbz9PnSuj3E1SXHgFPKuMO8f94x2zOjsF0ndf4xT7P8mGh1ncluO4OkmqjiM6VuDGT4VO7WNZPejuOooKuzFNafZf8iUGRS6ZyneyJkEJ70NWx3F9K/jJLuME+MhbGUXujg890Hsn66STj1G3JhC5XqxU1tIp3egwjI614sujWBndkJUoTRwAq9vTuMaU/hrXw9pk4vT5dSWrKLpIu70n6KmI3ptgZLLEeJTUxE9Nkch9RhQZXpcgbzzcEmTKK6TNiahOoqNYqLeEXJJE68xRaO5BxXVaXigC0Poyh4qrk6uMkmuNoNpVlG5PlxzBhdVUF6IKg7jGlPZPrH7enScAjTDEC/Jqqb35wCnsjoAlevFxQ1IGoBD5ftRJsy2k9RxcQ0X1cBmjbrqaRP8AqQxumdZFhziKi7Kbrj52zpQDDSURvcswyXNbLutKyyqsAdMgFIeLqnh4jourkNc3+/9Vuz/3s9OSVs3yA5GBx6QNJBojW5dNjvd77mz+6Tu++TifT1vbKu8qKzRG+m+eftGnHjhU0OJH1LzffL4+M1q9mUclnFJA5LmQfsraN3231+zwtZt/xLMj6/Me237xmc8WHaiRqFyZVyaoHO9rQNGkr3XrQaK2BiXxtlrP8x7+5L6ESmdfdHvPynXl73f2qCCnrlAik2ybboUpf3WQSKBNMG57KCmvHzrPYlay1pUrpwtY5NseZuC9lF+bt4BFZeiwnL2fWCC1gE3WxZsdtC1WYCKsSRGYZRHrtmYm566lFQrgiRBd6jDiApK2UHYZiNaGnvw+xNrSGcbn+psDJMgdvgv1gZbmezfo03n9vnsvjuIl58LEAf+e7BAarLusNn3jprrHpsqyMWOwgLbuycaEq1wfkgu9VGt8IBNWyNwWvQBLRpirTjn969e2IbaqGvaWKz91Hd5fd9DXL76VpYufWZu+sZvXMmS0dWs2H4b37vgVP763f923vNC26Q8WSHyfS558B5+86t/fdhtxF6OxCvy7Lp38tzK8wlTMBaWjN7PwMRGdix7LTPlNQsue9iYIF/fg3KW4T33s2LnS6vCqgd58lEdqxRT/UvROqF3bJxEOWYKg0wXBwibUzhl8dOUveUeiqHHqmc2LbiM+8weXFpXE/RClF/E1Seyf4TKoPx8dtB9kYNQW/gFyJWxuR4CUyAyGq86ngWE6h4AUj+P8gJ0fWruaak2NPN5onxArWCoBdmv0+JME53GTOctM3lHzuunkldM5lNimgQuoBloEtckV2syVXDMFCDyoNiAxEA1B5UcVHOKapg9bgQwOAO11pHST2BgBjybLVvJZ8s5oLeWLdfwoa8KTR966tk2mj6U6pCLs3UMTzmsypavhar1N7vFHqAUuabDT6HQyMrRCCDysy89P3as250tm2ooNLOxLBqto32hCfUgu2kHa0eztgT1EOqBotGaVw+z58Qm2ybOYWz2Gme3aVLN0gnLmlGH1QHDEzEDVUvd92kE0PQtDd/SDLJ9uWzcEcawcm/W7qHUyPr4N/1sP+ej7Ms6ey40WuVp+tk8R3Y/br032fsO+WY2fkHDz/bDvr+KyM9OFeYiaAbQbO3zyG/dDyDVijByJAYSo1p/oVxzlOrZ9vLN7L1tepqm59H0DLEHhSgBp4iNyXqTeIrIqGx8kKBO7MfEHkTGYJVHqZ5dHj3RHonOrj/SU1c4ldAMYhI/JYw0uQhKzQaxccSeR+THRB7ExmNgRjMwQzaculbEXkpiNInWxNqQGk1qsl4VSoHTdTQaP3GkujWstprtzghLJxO0S7C69To8Q+SnJJ4mF0OYOKxRFBsO32bjTyhlySUpQeyoapeNs6EcqGx0jkLTEnsarVJKdYufutZXjG3VLGUXIlPOoV2KpxT5JCWXAs5Q01mvDmMVKRrrFJ7TYHV2qs45wljh8PC1IW9TnLXEvsNLFGGc1XrhGVJP4zQY5REohe954HywHmHsoUyA1gblKaI4IXFqX88ONzuORGu0TwxKq9aPTEtcrxPECSbNToSkCkzqUFrhjIfThihNieIIpyBxrnV6LPtJ4GzaOs2V9TTJRlUFlSYop7Krx6rs+/mqz/93lqxa29av2+OujUUQKhq5ZF6o2LTxAt54681zj295zQcOet5q9RxBf8Rj6kz+6ZI3s3twiD/5i/mjXv7+r32UW8+7aN+E2SzWqpE4d9PruPK+cw9btlQ7lFOHTfpTPQPsHupj57KIXX0bWF5az9DoTlbs3cqOlUt4dskaNkxtpm9Ssae5ksZIDLWAuHI6o70hq2t7WblpmIGTv8/Q6f+EjRVJtBu/sJ2ooXFWUa17lPp2oT3Hdgv1HTn8bSUKtdNJepdSSBWOCnm1FJfswPNWkpspY6YDrJsmKTRxzz4KUR1FCddbxNa2w0wTkgCdL+IVlpK6GVyQYF0NbX2icgHbbwie2Y11lrhkaPZ6xPkRmsUceqZOOjDDeG/AVLCeShqSjwdxukmVOuP9PqP9OdZt2kuxUqHhDbJ5aJDHepYS+MPsGCiS+AnKBlTD7JLMs1RrEKvYGVb4O1hR3YGbUNhex7QuMmCm6NUV9gb97NYDTCdD6MByAs8wHUNVl6iapdRa/RjC6cdIdZ516S4G3TaMnsRRpeoMTReSmBAXT1GwMcoYcspRUjl6UsOMrRGVYnqsps8aYhcw06uJgEZaIXHZyXatalTKBkVCzlpqBUfsYqq9MyjdxFmfqpcDm8eleZ4eSNE6QtsAjQ+6mbV5cR75yMdhaeop6njMFD2U81HWwzY8FIpEwdPD9WycBecBEUqBdgHaGVQhwOJQJmsc+vi6AE8ZNAlWVbNh1Z3DqYiC03hpiCYgp0JyOkdh0KegDSZJyAceym9gyykFZ6iv9ng+V6PpGYxThICLagRpQiPN8ZROaTjD3ZGiojTTnqLp8vjO4VuDR0IzjIipY8mu6YHzcCq7sLdyButy2RetSrEuxGBQTuGh0SoGFRG5KDufbX1MrAjS7PSKthY/duSsQ5kYVEq+btH1hEICReXoiaFoFQUdgNHEefCURy4IKZocOT/EC0LQGuc0pifEC3yM5+H5PjZtnbLyA4wfgG/w/RxBGGCCPF6Yx4R5TK6IF+bwPA9DiopmmNj2LDaO0UEuO/2SNtBegDJe62qgCdooTFLLLklQmyZVBi/M4wVh1v3TpsSxw3gGY+sYbTBBiPZDjB+g03pW+6K97GZ8bFSnObUHpX1MmCeyhig1xFbheRovrZMqn8RpjJd12UydzrYZ5jBB6xbmMUEeE4TZKQYvBONntSraP/xIduIVr2uCxbnN5yk+lGJWQuKP8OSNv0++9jTw0NwyY8vLnLNjLyPjjvWn/1/6mOBUHqNCD1e7v8YqQ/VUzX/8jU/w7ltvZPvQUv7X29/NnoF9F7kKXZ2P8Kf8gCs42T3Oht0NekyNv7ry39JMyiydiBkreVy0scGSib08N7CR3rrihPGzs/SKZvuA5p/PKhKZlHM3jXLas8+ycszjrKHv09i9jMmnz2LypDcQX2g4p28HPz9wHjM6ZIV7jq+Ph6zNjfAq73mWuO2o8oUor5dqYy9JZQmN6Dye2nM3KhkjHz9HIb8XjSUuFticu5QRt4uCF9B/0jTNlc8RcxswW1V86KrmF2IxVM1SIn8FOhwmnzufElM408sjUT+53EoGi6t5tpljb5KyMvSpW4tRigHfI681o1HMo5U6P5msUDJZ6u/3PYYDD6MUiXPctiEmrzU7o4gh3+fEwKOSWpbqbD2Drs5gMsNgvkRfoYwXFtkbxYxGKYFWDAUnMxT4DPkeg4HHoO9RMHouJE6nlrzWeAqqqaVoNOP1Kj25AoHWbKs3uWV8A7uaMVsbEfdOVykaTdkzDGlDw1pyWtO0llocUfY0ZeXoNY5yENIb5in4PgqYiROCxhgqiaiYHMrLM42H1pqC0RS0xtcKjSJ2jl7PUPYMURpTtYq80RSNpmQMRaPnGvmVjKbHM/QYTd7oRW+IeLxy1qJeAQe9odNf8+ILLQIN7N/SwAeKHSmJeKXqmlMhX7/s5zhz25P86QXv5j+uvIzvTFjWjf4D6x6/BYDdn4toDMHmf/ovpI0+Vr7+v1Na+jgAT93wZ2w9cYzVZ1zPiTzFVlbRxwQ+CTP0sIQ9JA6+P+0T730Lr9uRUN30KHuW/Aal2nKmgr0U4h76p3ZSrO2mUNtNqbqD3qnncNqwc3gtU8tORXtNhi6+mFe/+zJK/VmduHOONM0u/ax1iFIe9fpmxsd/zPT0Q/h+PxOTdzMz8xgcZrhjrXPYF7nY2eEYU6BYPIli8URKxZNI0xq+30e+sJaouYcgGKTZ3EUutwKtQ8YnfkLgD5IvrKGQX00YLkcfotuuEEKI7nLcnQoJvayRzYfu/w5391wKGNZs+mdAMfXuhHQ4S9a53m1UG31s+5eP0rvmLqZHT+SGk/4nxaiPW56dYLgYMp7sZcaCQ/HJpXt5jgJnnPKf+MKanwPgyVv/iR13PMyF9/5nJkpl6ueuJf/AJqJywPAnPs7SM97DA7/5IUaHe1n1sY9zxRt+Zq6c1kZMTNzJ1iduYvfod0nT6sEvZoFmQ4XnlSn3vIpCYT1BuIRS8SSKxQ088eTv4nklAn+Q1DYolU6hVDyRYvEkcrnl8xqhvpi+vvNfdnmFEEJ0r66psXjozZcTbM/GMNi8+q2QS1j71A8BGP2dmGTlvpf55De+PHf/m2f+CWPF7Ydd7xXrruD3XvN79AQ9B82L45jsJILC93sBSNM6E5M/JWqOsnv3dxmfuIPe3nPx/QH27v3nl/RalPJwLiGXW8XAwMX0972avr5X4/v91Oqb0SqgUFhHtfoUY2O3Ui6fTU/PGRhTOGQ3MyGEEOLlOu5qLND7ugWt3fKDebOS5fOz07qfu5qB067j6h98hMhrUA7K/Nb5v8VnfvIZAD55wSe56tSrGG+MM5gfnPfcOJ6gVt/C85uvZc/em3kppqbun/c4CIZZsuSteF6JcvlMAn8QrQOSZAaAcvlsPO/QZy17SqfM3S+VTqZUOvmQywkhhBCd0DXBwr1Qbb6G1at/jS1bsq6koR+x1t/FN959PbuquzilWODB+/8VXz3vSoaGLmN09Lvcfc/XqVQeJ59fQ73+PAArV/4i27b975dUniBYQhRl3R2NKbFk6M0Yr4dlS99FuXz2gk4/CCGEEMeKrgkWoTr0Sxn/QDbkzgnrf5s4nmLnzm8C8Njjn5hb5sHW39HR7zI6+t15z58NFcBBoWJo6DLWrPl19u79IfX6FoJgkMHBNzDQfzFK6YOG7BZCCCG6XdcEC6f2jSq4v8Y5juHht6O1x6mn/BGjo9874gaT+fxqVq/+AP19F1IsnjA3va/3vCMstRBCCNFduiZYmKR4UGfMiV9KeO1FtxOGwwAopXn9Jffzo1vnt0vo67uQdWuvZnTPTfSUTqO//zUEwRAAUTROPr+aWu0Z8vnVaC2XWhZCCCEOp2uChU7zBwWL8r/6BPn8ivnLaY9LX/8QU1MPMDDw2nmnKwYGLj5ovV7rCqfF4oa2l1kIIYToNl3UgnB+z4+dP7OC4f4TD7mk55UYHLxE2kAIIYQQbdY1wcLZ+dccVBdsppBf3aHSCCGEEMenrgkWHHAJ3XjNOykWD11jIYQQQojF0TVtLFJvat7jt77mCx0qiRBCCHH86qIai31NNyvlpR0siBBCCHH86ppgEQd75u5PfKbewZIIIYQQx6+uCRaO5tz9fF/nyiGEEEIcz7omWKj92m7Ojj0hhBBCiKOre4JFtG9AbwkWQgghRGd0TbDw9uwLFrPDcQshhBDi6OqaYLG/k078vU4XQQghhDgudWWwyOdXdboIQgghxHGpK4OFEEIIITpDgoUQQggh2kaChRBCCCHapmuCRfHiiwEovOY1HS6JEEIIcfzqmouQrfjCf2P6xpsov+3yThdFCCGEOG51TbAwvb30/5v3dLoYQgghxHGta06FCCGEEKLzJFgIIYQQom0WHCxuv/123vGOd7B8+XKUUnzrW99ahGIJIYQQ4li04GBRrVY566yz+OIXv7gY5RFCCCHEMWzBjTevuOIKrrjiisUoixBCCCGOcYveK6TZbNJsNuceT09PL/YmhRBCCNEhi95485prrqG3t3futmqVXCBMCCGE6FaLHiw+/elPMzU1NXfbunXrYm9SCCGEEB2y6KdCwjAkDMPF3owQQgghXgFkHAshhBBCtM2CaywqlQqbNm2ae/zcc8/x4IMPMjAwwOrVq9taOCGEEEIcWxYcLO69917e+MY3zj3+xCc+AcD73vc+rrvuurYVTAghhBDHngUHize84Q045xajLEIIIYQ4xkkbCyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtI0ECyGEEEK0jQQLIYQQQrSNBAshhBBCtM0RBYsvfvGLrF27llwux4UXXsjdd9/d7nIJIYQQ4hi04GDx9a9/nU984hN89rOf5f777+ess87i8ssvZ3R0dDHKJ4QQQohjyIKDxRe+8AU+8IEP8P73v5/TTjuNv/qrv6JQKPC3f/u3i1E+IYQQQhxDFhQsoijivvvu47LLLtu3Aq257LLLuPPOOw/5nGazyfT09LybEEIIIbrTgoLF3r17SdOUkZGRedNHRkbYtWvXIZ9zzTXX0NvbO3dbtWrVkZdWCCGEEK9oi94r5NOf/jRTU1Nzt61bty72JoUQQgjRId5CFh4aGsIYw+7du+dN3717N0uXLj3kc8IwJAzDIy+hEEIIIY4ZC6qxCIKA8847j1tuuWVumrWWW265hYsuuqjthRNCCCHEsWVBNRYAn/jEJ3jf+97H+eefz6tf/Wr+9E//lGq1yvvf//7FKJ8QQgghjiELDhbvec972LNnD5/5zGfYtWsXZ599NjfddNNBDTqFEEIIcfxRzjl3NDc4PT1Nb28vU1NTlMvlo7lpIYQQQhyhl3r8lmuFCCGEEKJtJFgIIYQQom0kWAghhBCibSRYCCGEEKJtJFgIIYQQom0kWAghhBCibSRYCCGEEKJtJFgIIYQQom0kWAghhBCibRY8pPfLNTvQ5/T09NHetBBCCCGO0Oxx+8UG7D7qwWJmZgaAVatWHe1NCyGEEOJlmpmZobe397Dzj/q1Qqy17Nixg56eHpRSbVvv9PQ0q1atYuvWrXINkkUk+/nokP189Mi+PjpkPx8di7mfnXPMzMywfPlytD58S4qjXmOhtWblypWLtv5yuSwf2qNA9vPRIfv56JF9fXTIfj46Fms/v1BNxSxpvCmEEEKItpFgIYQQQoi26ZpgEYYhn/3sZwnDsNNF6Wqyn48O2c9Hj+zro0P289HxStjPR73xphBCCCG6V9fUWAghhBCi8yRYCCGEEKJtJFgIIYQQom0kWAghhBCibbomWHzxi19k7dq15HI5LrzwQu6+++5OF+kV6/bbb+cd73gHy5cvRynFt771rXnznXN85jOfYdmyZeTzeS677DKefvrpecuMj49z1VVXUS6X6evr41d/9VepVCrzlnn44Ye55JJLyOVyrFq1ij/5kz9Z7Jf2inLNNddwwQUX0NPTw/DwMD/7sz/Lxo0b5y3TaDS4+uqrGRwcpFQq8e53v5vdu3fPW2bLli1ceeWVFAoFhoeH+e3f/m2SJJm3zK233sq5555LGIZs2LCB6667brFf3ivGtddey5lnnjk3INBFF13EjTfeODdf9vHi+PznP49Sio9//ONz02Rft8fnPvc5lFLzbqeccsrc/Ff8fnZd4Prrr3dBELi//du/dY899pj7wAc+4Pr6+tzu3bs7XbRXpO9973vud3/3d90//MM/OMDdcMMN8+Z//vOfd729ve5b3/qWe+ihh9w73/lOt27dOlev1+eWedvb3ubOOussd9ddd7l/+Zd/cRs2bHDvfe975+ZPTU25kZERd9VVV7lHH33Ufe1rX3P5fN596UtfOlovs+Muv/xy95WvfMU9+uij7sEHH3Rvf/vb3erVq12lUplb5oMf/KBbtWqVu+WWW9y9997rXvOa17jXvva1c/OTJHFnnHGGu+yyy9wDDzzgvve977mhoSH36U9/em6ZZ5991hUKBfeJT3zCPf744+4v/uIvnDHG3XTTTUf19XbKd77zHffd737XPfXUU27jxo3ud37nd5zv++7RRx91zsk+Xgx33323W7t2rTvzzDPdxz72sbnpsq/b47Of/aw7/fTT3c6dO+due/bsmZv/St/PXREsXv3qV7urr7567nGapm758uXummuu6WCpjg0HBgtrrVu6dKn7L//lv8xNm5ycdGEYuq997WvOOecef/xxB7h77rlnbpkbb7zRKaXc9u3bnXPO/Y//8T9cf3+/azabc8t88pOfdCeffPIiv6JXrtHRUQe42267zTmX7Vff9903v/nNuWWeeOIJB7g777zTOZeFQK2127Vr19wy1157rSuXy3P79j/8h//gTj/99Hnbes973uMuv/zyxX5Jr1j9/f3ur//6r2UfL4KZmRl34oknuptvvtldeumlc8FC9nX7fPazn3VnnXXWIecdC/v5mD8VEkUR9913H5dddtncNK01l112GXfeeWcHS3Zseu6559i1a9e8/dnb28uFF144tz/vvPNO+vr6OP/88+eWueyyy9Ba89Of/nRumde//vUEQTC3zOWXX87GjRuZmJg4Sq/mlWVqagqAgYEBAO677z7iOJ63r0855RRWr149b1+/6lWvYmRkZG6Zyy+/nOnpaR577LG5ZfZfx+wyx+PnP01Trr/+eqrVKhdddJHs40Vw9dVXc+WVVx60P2Rft9fTTz/N8uXLWb9+PVdddRVbtmwBjo39fMwHi71795Km6bwdCDAyMsKuXbs6VKpj1+w+e6H9uWvXLoaHh+fN9zyPgYGBecscah37b+N4Yq3l4x//OBdffDFnnHEGkO2HIAjo6+ubt+yB+/rF9uPhlpmenqZery/Gy3nFeeSRRyiVSoRhyAc/+EFuuOEGTjvtNNnHbXb99ddz//33c8011xw0T/Z1+1x44YVcd9113HTTTVx77bU899xzXHLJJczMzBwT+/moX91UiOPR1VdfzaOPPsodd9zR6aJ0pZNPPpkHH3yQqakp/v7v/573ve993HbbbZ0uVlfZunUrH/vYx7j55pvJ5XKdLk5Xu+KKK+bun3nmmVx44YWsWbOGb3zjG+Tz+Q6W7KU55msshoaGMMYc1CJ29+7dLF26tEOlOnbN7rMX2p9Lly5ldHR03vwkSRgfH5+3zKHWsf82jhcf+chH+Kd/+id+9KMfsXLlyrnpS5cuJYoiJicn5y1/4L5+sf14uGXK5fIx8SXUDkEQsGHDBs477zyuueYazjrrLP7sz/5M9nEb3XfffYyOjnLuuefieR6e53Hbbbfx53/+53iex8jIiOzrRdLX18dJJ53Epk2bjonP9DEfLIIg4LzzzuOWW26Zm2at5ZZbbuGiiy7qYMmOTevWrWPp0qXz9uf09DQ//elP5/bnRRddxOTkJPfdd9/cMj/84Q+x1nLhhRfOLXP77bcTx/HcMjfffDMnn3wy/f39R+nVdJZzjo985CPccMMN/PCHP2TdunXz5p933nn4vj9vX2/cuJEtW7bM29ePPPLIvCB38803Uy6XOe200+aW2X8ds8scz59/ay3NZlP2cRu9+c1v5pFHHuHBBx+cu51//vlcddVVc/dlXy+OSqXCM888w7Jly46Nz/TLbv75CnD99de7MAzddddd5x5//HH367/+666vr29ei1ixz8zMjHvggQfcAw884AD3hS98wT3wwAPu+eefd85l3U37+vrct7/9bffwww+7d73rXYfsbnrOOee4n/70p+6OO+5wJ5544rzuppOTk25kZMT94i/+onv00Ufd9ddf7wqFwnHV3fRDH/qQ6+3tdbfeeuu8bmO1Wm1umQ9+8INu9erV7oc//KG799573UUXXeQuuuiiufmz3cbe+ta3ugcffNDddNNNbsmSJYfsNvbbv/3b7oknnnBf/OIXj6vueZ/61Kfcbbfd5p577jn38MMPu0996lNOKeV+8IMfOOdkHy+m/XuFOCf7ul1+8zd/0916663uueeecz/+8Y/dZZdd5oaGhtzo6Khz7pW/n7siWDjn3F/8xV+41atXuyAI3Ktf/Wp31113dbpIr1g/+tGPHHDQ7X3ve59zLuty+nu/93tuZGTEhWHo3vzmN7uNGzfOW8fY2Jh773vf60qlkiuXy+7973+/m5mZmbfMQw895F73ute5MAzdihUr3Oc///mj9RJfEQ61jwH3la98ZW6Zer3uPvzhD7v+/n5XKBTcz/3cz7mdO3fOW8/mzZvdFVdc4fL5vBsaGnK/+Zu/6eI4nrfMj370I3f22We7IAjc+vXr522j2/3Kr/yKW7NmjQuCwC1ZssS9+c1vngsVzsk+XkwHBgvZ1+3xnve8xy1btswFQeBWrFjh3vOe97hNmzbNzX+l72e5bLoQQggh2uaYb2MhhBBCiFcOCRZCCCGEaBsJFkIIIYRoGwkWQgghhGgbCRZCCCGEaBsJFkIIIYRoGwkWQgghhGgbCRZCCCGEaBsJFkIIIYRoGwkWQgghhGgbCRZCCCGEaBsJFkIIIYRom/8fb/mfdeFOn94AAAAASUVORK5CYII="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"for df in c2:\n",
|
||
" plt.plot(df.N, df.fd)\n",
|
||
"\n",
|
||
"for df in r3:\n",
|
||
" plt.plot(df.N, df.fd)\n",
|
||
"\n",
|
||
"plt.show()"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"outputs": [],
|
||
"source": [
|
||
"def convergent_tail_index(series, tol):\n",
|
||
" diffs = np.abs(np.ediff1d(series))\n",
|
||
" for i in range(0, len(diffs)):\n",
|
||
" if np.max(diffs[i:]) <= tol:\n",
|
||
" return i\n",
|
||
"\n",
|
||
" # No convergence found\n",
|
||
" return None"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"outputs": [],
|
||
"source": [
|
||
"def compute_fd(df, tol=0.05):\n",
|
||
" tail_index = convergent_tail_index(df.fd, tol)\n",
|
||
" return np.mean(df.fd[tail_index:]), np.std(df.fd[tail_index:])"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/numpy/lib/arraysetops.py:89: RuntimeWarning: invalid value encountered in subtract\n",
|
||
" return ary[1:] - ary[:-1]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"fds = [compute_fd(df, 0.001) for df in r3]\n",
|
||
"fds_clean = [f for f in fds if f[0] < np.inf]"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"outputs": [],
|
||
"source": [
|
||
"means, stds = list(zip(*fds_clean))"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "(1.7492904252145536, 0.05705396524689619)"
|
||
},
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"np.mean(means), np.std(means)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"outputs": [],
|
||
"source": [
|
||
"a = read_r3(\"/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/others/dla/dla.csv\")"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"outputs": [],
|
||
"source": [
|
||
"a.sort_values('fd', inplace=True)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": " r0 r1 r2 N r cr fd\n3832 0 0 10 3833 10.0 60.241182 2.013345\n3854 0 0 0 3855 0.0 60.241182 2.014741\n3865 0 0 2 3866 2.0 60.241182 2.015436\n5818 0 0 -12 5819 12.0 60.241182 2.115210",
|
||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>r0</th>\n <th>r1</th>\n <th>r2</th>\n <th>N</th>\n <th>r</th>\n <th>cr</th>\n <th>fd</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>3832</th>\n <td>0</td>\n <td>0</td>\n <td>10</td>\n <td>3833</td>\n <td>10.0</td>\n <td>60.241182</td>\n <td>2.013345</td>\n </tr>\n <tr>\n <th>3854</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>3855</td>\n <td>0.0</td>\n <td>60.241182</td>\n <td>2.014741</td>\n </tr>\n <tr>\n <th>3865</th>\n <td>0</td>\n <td>0</td>\n <td>2</td>\n <td>3866</td>\n <td>2.0</td>\n <td>60.241182</td>\n <td>2.015436</td>\n </tr>\n <tr>\n <th>5818</th>\n <td>0</td>\n <td>0</td>\n <td>-12</td>\n <td>5819</td>\n <td>12.0</td>\n <td>60.241182</td>\n <td>2.115210</td>\n </tr>\n </tbody>\n</table>\n</div>"
|
||
},
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a[(a.r0 == 0) & (a.r1 == 0)]"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "[<matplotlib.lines.Line2D at 0x162563940>]"
|
||
},
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGdCAYAAADXIOPgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzQElEQVR4nO3de3hU1aH38d/kNrnOhCQkIZBAuAgKCAgCQa3a0kZKrfT0PbWWVrStrT14KqWvtmjV59S3jb1o7WlRanvU01alWhVbtVoKIqIocglXRZBLuGQSkpBM7rdZ7x8zGRhJMBOSzE729/M8+5mwZ+2ZtReQ/XvWXmtthzHGCAAAwGKiIl0BAACAzhBSAACAJRFSAACAJRFSAACAJRFSAACAJRFSAACAJRFSAACAJRFSAACAJcVEugLd4fP5dPz4caWkpMjhcES6OgAAoBuMMaqtrVVOTo6iosLvFxkQIeX48ePKzc2NdDUAAEAPHDlyRCNGjAj7uAERUlJSUiT5T9LlckW4NgAAoDu8Xq9yc3OD1/FwDYiQ0nGLx+VyEVIAABhgejpUg4GzAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkggpAADAkgbEAwYBAMC5aW33qaq+RZV1Laqsbw7+XFXfosr6Fi2ZO05ZrvhIVzMEIQUAgAGo3WdU3eAPGB3Bo7KuRZV1zaH7Aj/XNLae9fP+z/QRhBQAAHAmY4y8TW2qrPP3clScFjz8f24O6QWpqm+Rz4T3HdFRDg1JjFN6UpzSk+M0JMn/c1pSnDJTnH1zYueAkAIAQB9pbfepss4fME7UNutEXXMwbHQWPFrbw0wdklITYwOhw6mMZH/gSE/y/5ye7FRaUpz/5ySn3Amxiopy9MGZ9g1CCgAAYWgLjO3wB44WnahtDoaQj76ebDj7LZbOJDtjlJ4cFwweHb0e6UnO0NfkOA1JjFNs9OCdA0NIAQDYXrvP6GRDV4EjdH9VQ4tMGB0e0VEOpSfFaWiKUxnJHdup4JGWHKeMQPBIS4pTfGx0353oAENIAQAMWk2t7Sr3Nqustsn/6m1SeW2zymubQsJHZV1zWOM7ohxSWpIzEDz8AWRosjMYRE5/TR1gt1ishJACABhw6pvb/GHD26SywOuJ2tNDiP/n2qa2bn+mwyGlJcadFjLiOg0dGYFxHtEEjz5HSAEAWIIxRnXB8OHv7fho74d/f7PqmrsfPuJjo5SZEq8sl1OZKfEamuJUpiu05yMzxR88Ygbx+I6BiJACAOhzbe0+ldc2y+NtUllNk0prmlTm9b96vE0qDwSRhpb2bn9mYly0slz+0JHlildmij9sBH92OZXpileKM0YOB70eAxEhBQBwThpa2uSpafJv3sAW+HNHEKkIY8xHijNGQ11OZaXE+4NGIHgMTXGe6hFxxSvZySVssONvGADQKWOMTja0qrSmUWXeJnlqmuWpaZTHe6onxFPTJG83x33ERDmU5YpXtjte2ae9ZgVeO3o/EuO4NMGPfwkAYFP1zW06Xt2o4zVNOl7dqNLqRh2rDvxc49/f0ubr1mclxUX7Q4c7XtmuBGW7nYEgkhAMJOlJccxyQVgIKQAwCLW2+1TmbdLxQOg4XtMYCCJNOlbt/7m7PSAZyXHKcsVrmDve3xPS0QviPrUvJT62j88IdkRIAYABpuM2zLGTp4WPmlPho7S6SWW1Td1acCwlPkbDUxM0zB2vnNSEwBavHLf/50yXU84YFhdDZBBSAMBiOkLI0ZMNOnqy8bTXUz93ZxZMXHSUst3x/tCRmhAMHsNS44PBhB4QWBkhBQD6WW+FkIxkp4annuoBGeb2h4+OIJKR5GQMCAY0QgoA9AFvU6tKKhtUUtXQ4xCSmeLUiCEJGjEk8SOv/iDCM14w2BFSAKAH2n1GHm9TIIjUq6SqQYcrG3SkqkGHqxpU3Y2n3xJCgLMjpABAFxpb2gPhwx9Cglulvzekpf3s03MzkuOUm5aoXEII0COEFAC2VtPYqkMV9TpUWa+DFfXBWzSHqxp0orb5rMfGRDk0YkiC8tKTNDItUXlpicpLD7ymJSqJFVGBc8L/IACDXkNLmw5VNOjgaWHkYEW9DlXUq7K+5azHuuJjNDI9KSSAjExLVG5aonJSE3gSLtCHCCkABoXmtnaVVJ4ZRA5W1KvMe/YekaEpTuVnJGlUeqJGpidpZDCMJMmdyBRdIFIIKQAGDGOMymub9WF5nT48UacPT9TrwxN1OlhRr+PVjWd9gN2QxFiNykhSfnqSP5BknHrlQXWANfE/E4DltLb7dLiyIRBE6rS/3B9IDpTXqba566Xck50xpwJIeqLyhyZpVCCUpCbG9eMZAOgNhBQAEVPb1OrvDSk/PYzU6XBlg9q66BaJckgj05M0ZmiSxgxN1pihycEwkpEcJ4eDMSLAYEFIAdDnaptata+8Th94arW3rFb7yuq0r7z2rGNFEuOiAyHEH0bGZiZrTGayRqYn8iwZwCYIKQB6TWNLu/aX1+mDslp9UHYqkByrbuzymKEpTo0dmqwxmaeFkaHJynbFs6Q7YHOEFABha2nz6UBFnT4oO713pFaHqxq6fPJuZopT47NTdF5Wis7LSta4rBSNGZosdwKzZwB0jpAC4Kwq6pr1XqlXe4579V6pV++V1urDE3VdjhkZkhh7Whg5FUoYuAogXIQUAJKktnafDlTU+wNJIIy8V+rtctXVlPiYkBAyPitF47JSGLwKoNcQUgAb8ja1ntYz4g8ke8tq1dJ25rNoHA5pVHqSzh+WoguGuXR+YBvmjieMAOhThBRgkKtpaNWu4zXaecy/7TpWo8OVDZ2WTYyLDoSQlGAYmZCdosQ4flUA6H/85gEGkeqGFu065g2GkZ3HalRS1XkgGZ6aoPOHuXTBaYEkLy2RGTUALCOskFJUVKTnnntO77//vhISEjRnzhz97Gc/0/jx48963DPPPKO77rpLhw4d0rhx4/Szn/1Mn/3sZ8+p4oDd1TS2asfRau04eiqQHD3Z+VTf3LQETR7u1sQctyYPd2vScLfSkhjICsDawgopr7/+uhYvXqyLL75YbW1tuuOOO/SZz3xGe/bsUVJSUqfHvPXWW7ruuutUVFSkz33uc3ryySe1YMECbd26VZMmTeqVkwAGu9Z2n/Z6arXtSLWKS6pVfOSkPjxR32nZvLTEYBDxv7qYWQNgQHIY09WqBh/vxIkTyszM1Ouvv65PfOITnZa59tprVV9frxdffDG4b/bs2Zo6dapWrFjRre/xer1yu92qqamRy+XqaXWBAcEYo2PVjSoOBpJq7Tpeo6bWMwe15qYl6MIRqZrcEUhy3Dy1F4BlnOv1+5zGpNTU1EiS0tLSuiyzceNGLV26NGRfYWGhVq1a1eUxzc3Nam4+Ne3R6/WeSzUBS2tqbVfxkWptOXxS2wKhpKLuzGm/KfExmpqbGtym5KYqI9kZgRoDQP/ocUjx+XxasmSJLrnkkrPetvF4PMrKygrZl5WVJY/H0+UxRUVF+q//+q+eVg2wtMq6Zm0+fFKbD1Vp8+GT2nWsRq3toR2aMVEOTRiWEggkQzQ1N1WjM5IY1ArAVnocUhYvXqxdu3Zpw4YNvVkfSdKyZctCel+8Xq9yc3N7/XuAvmaM0YGKem05dFLvHqrSlsMndaDizLEkmSlOzRg1RBfl+QPJpOFuxcfyED0A9tajkHLLLbfoxRdf1Pr16zVixIizls3OzlZZWVnIvrKyMmVnZ3d5jNPplNNJNzYGHp/PaE+pV28fqNSmg/5QUlnfcka587KSNWNUmmaMHKKLR6VpxJAEFkYDgI8IK6QYY/Sf//mfev7557Vu3Trl5+d/7DEFBQVas2aNlixZEty3evVqFRQUhF1ZwGp8PqP3PbXaeKAyGExqGltDysTFRGnqiFTNGDUk2FvCbBsA+HhhhZTFixfrySef1AsvvKCUlJTguBK3262EhARJ0vXXX6/hw4erqKhIknTrrbfq8ssv1/3336/58+dr5cqV2rx5sx555JFePhWg7/l8RnvLavX2gUpt/LBS73QSSpKdMbp41BDNGp2ui0eladJwl5wx3LoBgHCFFVIefvhhSdIVV1wRsv+xxx7TDTfcIEkqKSlRVFRU8L05c+boySef1I9+9CPdcccdGjdunFatWsUaKRgwjlQ1aP2+E9qwr0JvH6jUyYbQUJIUF60Zo9JUMCZds0ena1KOSzHRUV18GgCgu85pnZT+wjop6E/eplZt/LBSbwSCyaGPPOcmMRBKZo9OU8HodE0a7lYsoQQAzhDRdVKAwaCt3aftR6v1xr4KvbGvQsVHqtXuO5XdY6IcmpaXqsvGDdUlYzN04QhCCQD0B0IKbOlEbbPW7S3Xa3vL9ca+CtU2tYW8PzojSZeNy9Cl44Zq9ug0pcSziisA9DdCCmzB5zPafdyrte+Xa+3ecu04Wq3Tb3SmJsbqkjEZgWCSoRFDEiNXWQCAJEIKBrG65jZt2Feh1wLB5ERt6FLzk4a79MkJWbpy/FBdOCJV0azmCgCWQkjBoFJR16x/7SnTK7s9emt/pVraTz2ULykuWpeOy9AnJ2TqyvGZynTFR7CmAICPQ0jBgHf0ZINe3V2mV3d7tPlQlU4b86qR6Yn65IRMfXJCpmbmp7FeCQAMIIQUDEj7y2v1yi6PXtnt0a5joU/JnjzcrcKJWSqcmK2xmcksNw8AAxQhBQPGoYp6vbjjuP6+vVR7y2qD+x0O6eJRabpqYrY+MzGLQa8AMEgQUmBppTWNemlHqf6+/bi2H60J7o+NduiSsRm6amK25l6QpYxkHkgJAIMNIQWWU1Xfopd2lurvxce16VBVcH+UQ7pkbIauvjBHhROz5U5k7RIAGMwIKbCEljafXttbrr9uOarX3i9X22mjXy8eNUSfn5KjqyYN09AUekwAwC4IKYgYY/wLrP11y1H9bftxVdW3BN+bNNyla6YM1/wLhyknNSGCtQQARAohBf2uoq5Zz289pme3HtX7nlMDYDNTnPrCtOH64vQROi8rJYI1BABYASEF/cIYo40HKvXEOyX6526PWtv9t3PiYqL0mQuy9MXpI3TZ2AzF8OA+AEAAIQV96mR9i/665aie2lSiAxX1wf1TclP1pRkj9LnJOQyABQB0ipCCXmeM0daSk/rTxsN6eZdHLW3+pemT4qK1YNpwfWVWnibmuCNcSwCA1RFS0Gta2nz6x65S/c+Gg9px2pomE3NcWjhrpD4/NUfJTv7JAQC6hysGzllVfYue2lSiP248pDKv/0nDcTFRumZKjr46e6QuHOFmaXoAQNgIKeix/eV1+p8NB/Tc1mNqDtzSGZri1PWzR+ors/KUziqwAIBzQEhB2HYcrdZDr32oV/d4ZAJrrk0a7tI3Ls3X/Mk5iothhg4A4NwRUtAtxhi9faBKD63brzf2VQT3f/qCLH3rE6M1Y+QQbukAAHoVIQVnZYzRa3vL9Zu1+7WtpFqSFB3l0DVTcnTzFWNYdA0A0GcIKeiUMUZv7q/UL/+5V8VHqiX5B8NeOyNX3/rEaOWmJUa2ggCAQY+QgjNsOlil+/+5V+8c9D+BOD42SosKRukbl+UrMyU+wrUDANgFIQVBO4/W6Bf/3Kv1H5yQJMVFR2nh7Dx954oxhBMAQL8jpEDHqxv1y1f36rltxyRJMVEOfeniXN1y5VieQAwAiBhCio3VNbdpxboP9fs3DgTXOVkwNUdLPz1eeemMOQEARBYhZZB6ZVepbv7z1rOWSXbGqK65TZI0c1Sa7px/vqbkpvZD7QAA+HiElEGm3Wc05o6Xu1W2rrlNo9IT9cN556twYhbrnAAALIWQMog8sv5D/fTl98M65p/fu5wVYgEAlkRIGSRG/fClsMq/9N1LNTHH3Ue1AQDg3BFSBrjqhhZN/fHqsI45dN/8PqoNAAC9h5AygO08WqOrf7uh2+X3/2SeYqK5tQMAGBgIKQPUq7s9+vaftnSr7G2F47X4yrF9XCMAAHoXIWWAMcbot2v36/7VH3xs2YvyUvXXm+coKopZOwCAgYeQMoA0tbbrtr/u0N+3H5ck3TBnlO6cf75iuYUDABiECCkDhKemSd/602btOFqjmCiH7l0wSdfNzIt0tQAA6DOElAHgg7JaLXp0k0prmjQkMVYPf3W6Zo9Oj3S1AADoU4QUi9tyuEpff3yzahpbNWZokh67YSbP1QEA2AIhxcL+tadMtzy1VU2tPk3LS9Wjiy7WkKS4SFcLAIB+QUixqOe3HdX/fWaH2n1Gn5yQqd9+ZZoS4/jrAgDYB1c9C/rrlqO67a/bZYz0xYtG6L4vTmYGDwDAdggpFvP05iP6wbM7ZIy0cFae7r1mEuucAABsiZBiIU+/e0Q/eM4fUL42e6R+fM1EORwEFACAPRFSLOKlHaXBgHLDnFG65+oLCCgAAFtjoIMFvLHvhJb8ZZuMkb4yK4+AAgCACCkRV3ykWt/+0xa1thvNv3CY7r1mEgEFAAARUiLqUEW9bnxskxpa2nXZuAz96ktTFc0gWQAAJBFSIqamsVVf/993dbKhVVNGuLXiq9MVF8NfBwAAHbgqRkBbu0+3PLlVB07UK8cdr98vmqEkJ2OYAQA4HSElAn784h69sa9CCbHR+v2iGcpMiY90lQAAsBxCSj97ZvMR/XHjYUnSg1+eqok57gjXCAAAayKk9KO9nlrd9cIuSdL35p6nwonZEa4RAADWRUjpJ/XNbfrOE1vU1OrTZeMy9J+fHBvpKgEAYGmElH5y5/M7deBEvbJd8Xrw2qk8jwcAgI9BSOkHf9t+XKuKjys6yqHffmWa0pOdka4SAACWR0jpY56aJt21yj8O5ZYrx2rGqLQI1wgAgIGBkNKHjDG6/dkdqmls1eThbt3COBQAALqNkNKHntp0ROs/OKG4mCj96topio2muQEA6C6umn3kRG2ziv7xniTp9sLxGpuZEuEaAQAwsBBS+shPXtqj2qY2TRru0o2X5Ee6OgAADDiElD7w5v4KrSo+LodD+ukXJvNkYwAAeoCQ0sta2nzB2TzXzx6pC0ekRrZCAAAMUISUXvbntw/rQEW9MpKd+n7h+EhXBwCAASvskLJ+/XpdffXVysnJkcPh0KpVq85aft26dXI4HGdsHo+np3W2rJrGVv332n2SpKWfPk+u+NgI1wgAgIEr7JBSX1+vKVOmaPny5WEdt3fvXpWWlga3zMzMcL/a8h56bb+qG1o1LjNZX5oxItLVAQBgQIsJ94B58+Zp3rx5YX9RZmamUlNTwz5uoDh6skGPvXlIknTHZ89XDGuiAABwTvrtSjp16lQNGzZMn/70p/Xmm2+etWxzc7O8Xm/IZnXLX9uvlnaf5oxJ1xXjh0a6OgAADHh9HlKGDRumFStW6Nlnn9Wzzz6r3NxcXXHFFdq6dWuXxxQVFcntdge33Nzcvq7mOTl6skF/3XJUkn8sisPBlGMAAM6Vwxhjenyww6Hnn39eCxYsCOu4yy+/XHl5efrTn/7U6fvNzc1qbm4O/tnr9So3N1c1NTVyuVw9rW6fufP5nXrinRJdMjZdT3xzdqSrAwCAJXi9Xrnd7h5fv8Mek9IbZs6cqQ0bNnT5vtPplNPp7Mca9dzx6kY9vfmIJOm7nxwX4doAADB4RGR0Z3FxsYYNGxaJr+51/7PhoFrbjWblp2nW6PRIVwcAgEEj7J6Uuro67d+/P/jngwcPqri4WGlpacrLy9OyZct07Ngx/fGPf5QkPfjgg8rPz9fEiRPV1NSkP/zhD1q7dq3++c9/9t5ZREhtU6v+8q6/F+XmK8ZEuDYAAAwuYYeUzZs368orrwz+eenSpZKkRYsW6fHHH1dpaalKSkqC77e0tOj73/++jh07psTERF144YX617/+FfIZA9Uzm4+qrrlNY4Ym6fJxzOgBAKA3ndPA2f5yrgNv+kK7z+jKX65TSVWD/t+CSfrq7JGRrhIAAJZyrtdvVhzroTXvlamkqkHuhFh98SJWlwUAoLcRUnroyU3+W1pfnpmrhLjoCNcGAIDBh5DSA6U1jVr/wQlJ0pcvzotwbQAAGJwIKT3w7Jaj8hlpZn6a8jOSIl0dAAAGJUJKmHw+o6c3+5fAv3aGtZfrBwBgICOkhOmdg1UqqWpQijNGn508OBakAwDAiggpYfrb9uOSpPkXDmPALAAAfYiQEobWdp9e2VUqSfrchTkRrg0AAIMbISUMGz+s1MmGVqUnxWn26LRIVwcAgEGNkBKGF3f4b/VcNSlbMdE0HQAAfYkrbTe1tvv06u4ySf7xKAAAoG8RUrrp3YNVqmn03+qZlZ8e6eoAADDoEVK6ae375ZKkK8ZnKjrKEeHaAAAw+BFSumntXn9I+eSEzAjXBAAAeyCkdMPhynodOFGvmCiHLjsvI9LVAQDAFggp3dBxq2fGqCFyxcdGuDYAANgDIaUbXg888ZhbPQAA9B9Cysdobffp3YNVkqRLxw6NcG0AALAPQsrH2HmsRvUt7XInxGpCdkqkqwMAgG0QUj7G2wcqJUmz8tMUxdRjAAD6DSHlY2z80B9SCsawgBsAAP2JkHIWre0+bT50UpI0ezQhBQCA/kRIOYvdx71qbG1XamKsxmcxHgUAgP5ESDmL4hJ/L8q03FTGowAA0M8IKWdRfKRakjQ1d0hkKwIAgA0RUs5i+9EaSdKUXHeEawIAgP0QUrpQ3dCigxX1kqSpuamRrQwAADZESOlCRy9KfkaSUhPjIlwbAADsh5DShe2B8ShTRnCrBwCASCCkdGHPca8kadJwQgoAAJFASOnC+x5/SDl/mCvCNQEAwJ4IKZ1oaGnT4aoGSeKhggAARAghpRMflNXJGCkj2an0ZGekqwMAgC0RUjrxfmnHrR56UQAAiBRCSife99RKEs/rAQAggggpnegYNDue8SgAAEQMIaUTB074V5odR08KAAARQ0j5iLrmNpXXNkuS8tOTIlwbAADsi5DyEYcCz+tJS4qTOzE2wrUBAMC+CCkf0fFQwfwMelEAAIgkQspHdPSkjOJWDwAAEUVI+YiOnpTRQwkpAABEEiHlIw5W0pMCAIAVEFI+4nCl/5k9ozISI1wTAADsjZBymoaWNlXVt0iSctMIKQAARBIh5TTHq5skSSnOGLnimX4MAEAkEVJOc7y6UZKUk5oQ4ZoAAABCymlOhZT4CNcEAAAQUk5DTwoAANZBSDnNscCYlOFDCCkAAEQaIeU0HT0pw+lJAQAg4ggppzlew+0eAACsgpASYIyRp8Z/uyfbxcBZAAAijZASUNvcpuY2nyRpaIozwrUBAACElIATtc2S/Au5xcdGR7g2AACAkBJQEQgpGfSiAABgCYSUgBN1/pAyNJmQAgCAFRBSAk71pMRFuCYAAEAipATRkwIAgLUQUgIqalskSRmEFAAALIGQEtDRk8LAWQAArIGQElDB7R4AACyFkBJQWee/3ZOWzMBZAACsgJASUNPYKkkakkhIAQDACsIOKevXr9fVV1+tnJwcORwOrVq16mOPWbdunS666CI5nU6NHTtWjz/+eA+q2nda232qa26TJLkTYiNcGwAAIPUgpNTX12vKlClavnx5t8ofPHhQ8+fP15VXXqni4mItWbJE3/zmN/Xqq6+GXdm+4g30okiSKz4mgjUBAAAdwr4iz5s3T/Pmzet2+RUrVig/P1/333+/JOn888/Xhg0b9Ktf/UqFhYXhfn2fqA6ElJT4GMVEcwcMAAAr6PMr8saNGzV37tyQfYWFhdq4cWOXxzQ3N8vr9YZsfaljPAq3egAAsI4+Dykej0dZWVkh+7KysuT1etXY2NjpMUVFRXK73cEtNze3T+tY0+APKamJhBQAAKzCkvc2li1bppqamuB25MiRPv2+jp6U1ARm9gAAYBV9Pko0OztbZWVlIfvKysrkcrmUkJDQ6TFOp1NOZ/8tqlbd4F8jhds9AABYR5/3pBQUFGjNmjUh+1avXq2CgoK+/upu6xg46+Z2DwAAlhF2SKmrq1NxcbGKi4sl+acYFxcXq6SkRJL/Vs31118fLH/zzTfrwIEDuv322/X+++/roYce0tNPP63vfe97vXMGveDU7R5CCgAAVhF2SNm8ebOmTZumadOmSZKWLl2qadOm6e6775YklZaWBgOLJOXn5+ull17S6tWrNWXKFN1///36wx/+YJnpx9KpkOIipAAAYBlhj0m54oorZIzp8v3OVpO94oortG3btnC/qt/UB1abTXaykBsAAFZhydk9/a2+uV0SIQUAACshpEjB5/YkEVIAALAMQopO3e5JckZHuCYAAKADIUWMSQEAwIoIKeJ2DwAAVmT7kGKMUX2Lf+BsUhwhBQAAq7B9SGlu86nd559SzZgUAACsw/YhpWM8ikRPCgAAVkJICayRkhgXragoR4RrAwAAOtg+pDBoFgAAa7J9SKlvYfoxAABWZPuQ0hCY2ZMQy6BZAACsxPYhpanVH1LiY23fFAAAWIrtr8ynQgo9KQAAWIntQ0pzm08SIQUAAKshpAR6Upwxtm8KAAAsxfZX5qZWelIAALAi24eU5jYGzgIAYEW2vzJ39KQ4Y+hJAQDASggpHWNS6EkBAMBSbH9lDs7uoScFAABLsX1IoScFAABrsv2VuYmeFAAALImQwoqzAABYku1DSseYFBZzAwDAWmx/ZaYnBQAAa7J9SGFZfAAArMn2V+bg7R5m9wAAYCm2vzK3tvtDSmy07ZsCAABLsf2VubXdSCKkAABgNba/MrcFe1IcEa4JAAA4ne1DSgs9KQAAWJLtr8xtPnpSAACwItuHlNY2Bs4CAGBFtr8ydwycjSGkAABgKba+Mhtj1MrtHgAALMnWIaXdZ2T8HSmKoycFAABLsfWVuc1ngj9zuwcAAGux9ZW5JbBGisTtHgAArMbWIaWt/VRPSmyUrZsCAADLsfWVueO5PdFRDkVF0ZMCAICV2DqktATWSIkhoAAAYDm2DikdA2eZ2QMAgPXY+urccbsnhkGzAABYDiFFLIkPAIAV2frq3MoTkAEAsCxbX53buN0DAIBl2TqktAcGzkY7CCkAAFiNvUNK4ME9rJECAID12DqkBB6ATE8KAAAWZOuQQk8KAADWZeuQ4usIKWQUAAAsx94hpWPgLCkFAADLsXVI6ZjdE8WYFAAALMfWIaXjdg89KQAAWI+tQ0o7s3sAALAse4eU4OyeCFcEAACcwdaXZ2MYkwIAgFXZOqS0M7sHAADLIqSInhQAAKzI1iGF2T0AAFiXrUNKx+weelIAALAee4eUYE9KhCsCAADO0KPL8/LlyzVq1CjFx8dr1qxZ2rRpU5dlH3/8cTkcjpAtPj6+xxXuTczuAQDAusIOKX/5y1+0dOlS3XPPPdq6daumTJmiwsJClZeXd3mMy+VSaWlpcDt8+PA5Vbq3BAfOMiYFAADLCTukPPDAA7rpppt044036oILLtCKFSuUmJioRx99tMtjHA6HsrOzg1tWVtY5Vbq3BKcg05MCAIDlhBVSWlpatGXLFs2dO/fUB0RFae7cudq4cWOXx9XV1WnkyJHKzc3VNddco927d/e8xr2I2T0AAFhXWCGloqJC7e3tZ/SEZGVlyePxdHrM+PHj9eijj+qFF17Qn//8Z/l8Ps2ZM0dHjx7t8nuam5vl9XpDtr7A7B4AAKyrz+e1FBQU6Prrr9fUqVN1+eWX67nnntPQoUP1u9/9rstjioqK5Ha7g1tubm6f1M3H7B4AACwrrMtzRkaGoqOjVVZWFrK/rKxM2dnZ3fqM2NhYTZs2Tfv37++yzLJly1RTUxPcjhw5Ek41u83HirMAAFhWWCElLi5O06dP15o1a4L7fD6f1qxZo4KCgm59Rnt7u3bu3Klhw4Z1WcbpdMrlcoVsfeHUU5AJKQAAWE1MuAcsXbpUixYt0owZMzRz5kw9+OCDqq+v14033ihJuv766zV8+HAVFRVJkn784x9r9uzZGjt2rKqrq/WLX/xChw8f1je/+c3ePZMe8DG7BwAAywo7pFx77bU6ceKE7r77bnk8Hk2dOlWvvPJKcDBtSUmJoqJOddCcPHlSN910kzwej4YMGaLp06frrbfe0gUXXNB7Z9FD7czuAQDAshymY9lVC/N6vXK73aqpqenVWz/3/eN9rXj9Q339knzdfXXkQxMAAIPJuV6/bT2vhdk9AABYl60vz8zuAQDAumwdUoL3ucgoAABYjr1DSiClOEgpAABYjr1DSqAvhbs9AABYj71DSrAnBQAAWI2tQ0oHelIAALAeQgoAALAkW4eUjnXsGDgLAID12DukBF653QMAgPXYO6QwcBYAAMuyd0jp6EuhKwUAAMuxd0ihJwUAAMuydUjpQEcKAADWY+uQEhw4S18KAACWY++QwpAUAAAsy9Yh5bTnIAMAAIuxdUhh4CwAANZFSBG3ewAAsCJ7h5TA7R4HKQUAAMuxd0hhSAoAAJZl65DSgY4UAACsx9YhhXVSAACwLnuHFAbOAgBgWfYOKayTAgCAZdk6pIh1UgAAsCxbh5TgmBRSCgAAlmPvkBIYlMLAWQAArMfWIaUDPSkAAFiPrUMKw2YBALAue4eU4BRkulIAALAae4eUwCsRBQAA67F3SOHhPQAAWJa9Q0rglbs9AABYj61DCou5AQBgXfYOKQEMnAUAwHpsHVI6nt1DRgEAwHrsHVK43QMAgGURUiS6UgAAsCB7h5SO2z0RrgcAADiTvUNKcMXZyNYDAACcyd4hJdIVAAAAXbJ3SAkOnKUrBQAAq7F1SOnA7R4AAKzH5iGFgbMAAFiVrUMKA2cBALAue4eUwCtjUgAAsB57hxSWnAUAwLLsHVICr2QUAACsx94hhYVSAACwLFuHlA4ORs4CAGA5tg4p3O4BAMC67B1SAvd76EgBAMB6bB1SOhBSAACwHluHFJ7dAwCAddk7pIjbPQAAWJW9QwpTkAEAsCxCCgAAsCRbh5QOrJMCAID12DqkBMekRLgeAADgTPYOKR2ze0gpAABYjr1DSuCVKcgAAFiPrUOK6EkBAMCybB1SGJMCAIB19SikLF++XKNGjVJ8fLxmzZqlTZs2nbX8M888owkTJig+Pl6TJ0/Wyy+/3KPK9jbGpAAAYF1hh5S//OUvWrp0qe655x5t3bpVU6ZMUWFhocrLyzst/9Zbb+m6667TN77xDW3btk0LFizQggULtGvXrnOufO8hpQAAYDVhh5QHHnhAN910k2688UZdcMEFWrFihRITE/Xoo492Wv7Xv/61rrrqKt122206//zzde+99+qiiy7Sb3/723Ou/LliLTcAAKwrrJDS0tKiLVu2aO7cuac+ICpKc+fO1caNGzs9ZuPGjSHlJamwsLDL8pLU3Nwsr9cbsvUFY3h2DwAAVhVWSKmoqFB7e7uysrJC9mdlZcnj8XR6jMfjCau8JBUVFcntdge33NzccKrZbaemIAMAAKux5OyeZcuWqaamJrgdOXKkT77n/0wfocVXjtHooUl98vkAAKDnYsIpnJGRoejoaJWVlYXsLysrU3Z2dqfHZGdnh1VekpxOp5xOZzhV65GFs0b2+XcAAICeCasnJS4uTtOnT9eaNWuC+3w+n9asWaOCgoJOjykoKAgpL0mrV6/usjwAAIAUZk+KJC1dulSLFi3SjBkzNHPmTD344IOqr6/XjTfeKEm6/vrrNXz4cBUVFUmSbr31Vl1++eW6//77NX/+fK1cuVKbN2/WI4880rtnAgAABpWwQ8q1116rEydO6O6775bH49HUqVP1yiuvBAfHlpSUKCrqVAfNnDlz9OSTT+pHP/qR7rjjDo0bN06rVq3SpEmTeu8sAADAoOMwHfNwLczr9crtdqumpkYulyvS1QEAAN1wrtdvS87uAQAAIKQAAABLIqQAAABLIqQAAABLIqQAAABLIqQAAABLIqQAAABLIqQAAABLIqQAAABLCntZ/EjoWBTX6/VGuCYAAKC7Oq7bPV3cfkCElNraWklSbm5uhGsCAADCVVtbK7fbHfZxA+LZPT6fT8ePH1dKSoocDkevfa7X61Vubq6OHDnCM4H6Ae3df2jr/kV79x/aun+da3sbY1RbW6ucnJyQhw9314DoSYmKitKIESP67PNdLhf/2PsR7d1/aOv+RXv3H9q6f51Le/ekB6UDA2cBAIAlEVIAAIAl2TqkOJ1O3XPPPXI6nZGuii3Q3v2Htu5ftHf/oa37V6Tbe0AMnAUAAPZj654UAABgXYQUAABgSYQUAABgSYQUAABgSbYOKcuXL9eoUaMUHx+vWbNmadOmTZGukqUVFRXp4osvVkpKijIzM7VgwQLt3bs3pExTU5MWL16s9PR0JScn64tf/KLKyspCypSUlGj+/PlKTExUZmambrvtNrW1tYWUWbdunS666CI5nU6NHTtWjz/+eF+fnqXdd999cjgcWrJkSXAfbd27jh07pq9+9atKT09XQkKCJk+erM2bNwffN8bo7rvv1rBhw5SQkKC5c+dq3759IZ9RVVWlhQsXyuVyKTU1Vd/4xjdUV1cXUmbHjh267LLLFB8fr9zcXP385z/vl/Ozkvb2dt11113Kz89XQkKCxowZo3vvvTfk+S60d8+sX79eV199tXJycuRwOLRq1aqQ9/uzXZ955hlNmDBB8fHxmjx5sl5++eXwT8jY1MqVK01cXJx59NFHze7du81NN91kUlNTTVlZWaSrZlmFhYXmscceM7t27TLFxcXms5/9rMnLyzN1dXXBMjfffLPJzc01a9asMZs3bzazZ882c+bMCb7f1tZmJk2aZObOnWu2bdtmXn75ZZORkWGWLVsWLHPgwAGTmJholi5davbs2WN+85vfmOjoaPPKK6/06/laxaZNm8yoUaPMhRdeaG699dbgftq691RVVZmRI0eaG264wbzzzjvmwIED5tVXXzX79+8PlrnvvvuM2+02q1atMtu3bzef//znTX5+vmlsbAyWueqqq8yUKVPM22+/bd544w0zduxYc9111wXfr6mpMVlZWWbhwoVm165d5qmnnjIJCQnmd7/7Xb+eb6T95Cc/Menp6ebFF180Bw8eNM8884xJTk42v/71r4NlaO+eefnll82dd95pnnvuOSPJPP/88yHv91e7vvnmmyY6Otr8/Oc/N3v27DE/+tGPTGxsrNm5c2dY52PbkDJz5kyzePHi4J/b29tNTk6OKSoqimCtBpby8nIjybz++uvGGGOqq6tNbGyseeaZZ4Jl3nvvPSPJbNy40Rjj/w8UFRVlPB5PsMzDDz9sXC6XaW5uNsYYc/vtt5uJEyeGfNe1115rCgsL+/qULKe2ttaMGzfOrF692lx++eXBkEJb964f/OAH5tJLL+3yfZ/PZ7Kzs80vfvGL4L7q6mrjdDrNU089ZYwxZs+ePUaSeffdd4Nl/vGPfxiHw2GOHTtmjDHmoYceMkOGDAm2f8d3jx8/vrdPydLmz59vvv71r4fs+7d/+zezcOFCYwzt3Vs+GlL6s12/9KUvmfnz54fUZ9asWebb3/52WOdgy9s9LS0t2rJli+bOnRvcFxUVpblz52rjxo0RrNnAUlNTI0lKS0uTJG3ZskWtra0h7TphwgTl5eUF23Xjxo2aPHmysrKygmUKCwvl9Xq1e/fuYJnTP6OjjB3/bhYvXqz58+ef0R60de/629/+phkzZujf//3flZmZqWnTpun3v/998P2DBw/K4/GEtJXb7dasWbNC2js1NVUzZswIlpk7d66ioqL0zjvvBMt84hOfUFxcXLBMYWGh9u7dq5MnT/b1aVrGnDlztGbNGn3wwQeSpO3bt2vDhg2aN2+eJNq7r/Rnu/bW7xZbhpSKigq1t7eH/PKWpKysLHk8ngjVamDx+XxasmSJLrnkEk2aNEmS5PF4FBcXp9TU1JCyp7erx+PptN073jtbGa/Xq8bGxr44HUtauXKltm7dqqKiojPeo61714EDB/Twww9r3LhxevXVV/Wd73xH3/3ud/W///u/kk6119l+Z3g8HmVmZoa8HxMTo7S0tLD+Tuzghz/8ob785S9rwoQJio2N1bRp07RkyRItXLhQEu3dV/qzXbsqE267D4inIMN6Fi9erF27dmnDhg2RrsqgdOTIEd16661avXq14uPjI12dQc/n82nGjBn66U9/KkmaNm2adu3apRUrVmjRokURrt3g8/TTT+uJJ57Qk08+qYkTJ6q4uFhLlixRTk4O7Y0QtuxJycjIUHR09BkzIcrKypSdnR2hWg0ct9xyi1588UW99tprGjFiRHB/dna2WlpaVF1dHVL+9HbNzs7utN073jtbGZfLpYSEhN4+HUvasmWLysvLddFFFykmJkYxMTF6/fXX9d///d+KiYlRVlYWbd2Lhg0bpgsuuCBk3/nnn6+SkhJJp9rrbL8zsrOzVV5eHvJ+W1ubqqqqwvo7sYPbbrst2JsyefJkfe1rX9P3vve9YK8h7d03+rNduyoTbrvbMqTExcVp+vTpWrNmTXCfz+fTmjVrVFBQEMGaWZsxRrfccouef/55rV27Vvn5+SHvT58+XbGxsSHtunfvXpWUlATbtaCgQDt37gz5T7B69Wq5XK7gRaKgoCDkMzrK2Onv5lOf+pR27typ4uLi4DZjxgwtXLgw+DNt3XsuueSSM6bTf/DBBxo5cqQkKT8/X9nZ2SFt5fV69c4774S0d3V1tbZs2RIss3btWvl8Ps2aNStYZv369WptbQ2WWb16tcaPH68hQ4b02flZTUNDg6KiQi8/0dHR8vl8kmjvvtKf7dprv1vCGmY7iKxcudI4nU7z+OOPmz179phvfetbJjU1NWQmBEJ95zvfMW6326xbt86UlpYGt4aGhmCZm2++2eTl5Zm1a9eazZs3m4KCAlNQUBB8v2Na7Gc+8xlTXFxsXnnlFTN06NBOp8Xedttt5r333jPLly+35bTYjzp9do8xtHVv2rRpk4mJiTE/+clPzL59+8wTTzxhEhMTzZ///Odgmfvuu8+kpqaaF154wezYscNcc801nU7dnDZtmnnnnXfMhg0bzLhx40KmblZXV5usrCzzta99zezatcusXLnSJCYmDuopsZ1ZtGiRGT58eHAK8nPPPWcyMjLM7bffHixDe/dMbW2t2bZtm9m2bZuRZB544AGzbds2c/jwYWNM/7Xrm2++aWJiYswvf/lL895775l77rmHKcjh+s1vfmPy8vJMXFycmTlzpnn77bcjXSVLk9Tp9thjjwXLNDY2mv/4j/8wQ4YMMYmJieYLX/iCKS0tDfmcQ4cOmXnz5pmEhASTkZFhvv/975vW1taQMq+99pqZOnWqiYuLM6NHjw75Drv6aEihrXvX3//+dzNp0iTjdDrNhAkTzCOPPBLyvs/nM3fddZfJysoyTqfTfOpTnzJ79+4NKVNZWWmuu+46k5ycbFwul7nxxhtNbW1tSJnt27ebSy+91DidTjN8+HBz33339fm5WY3X6zW33nqrycvLM/Hx8Wb06NHmzjvvDJnSSnv3zGuvvdbp7+lFixYZY/q3XZ9++mlz3nnnmbi4ODNx4kTz0ksvhX0+DmNOW+IPAADAImw5JgUAAFgfIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFgSIQUAAFjS/wdCRx4hrmLg9QAAAABJRU5ErkJggg=="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.plot(a.fd)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"outputs": [],
|
||
"source": [
|
||
"big = pd.read_json(\"/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/rust-codebase/balls-10000.json\")"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "[<matplotlib.lines.Line2D at 0x13feb2920>]"
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBN0lEQVR4nO3deXwV9b3/8ffJSXJO1pOEkA0DCbusQZAYigs1GijXSnuvRX5WkOtytdgrjUvFKujtEmtbi7ZU6oLodUG9KraKWBoFRAOUJWIEWQQMS05CQnJOFrKe+f0ROXhMgJyYZUhez8djHuTMfGbOd75I5u3Md2YshmEYAgAAMLGA7m4AAADA2RBYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6QV2dwM6gsfj0dGjRxURESGLxdLdzQEAAG1gGIYqKyuVlJSkgIAzn0PpEYHl6NGjSk5O7u5mAACAdjh06JDOO++8M9b0iMASEREhqXmHIyMju7k1AACgLdxut5KTk73H8TPpEYHl5GWgyMhIAgsAAOeYtgznYNAtAAAwPQILAAAwPb8CS05Oji688EJFREQoLi5OM2bM0O7du8+63muvvabhw4fLbrdr9OjRWrVqlc9ywzC0cOFCJSYmKiQkRJmZmdq7d69/ewIAAHosvwLLunXrNG/ePG3cuFFr1qxRQ0ODrrzySlVXV592nY8//lizZs3SjTfeqO3bt2vGjBmaMWOGCgoKvDWPPPKIHn/8cS1dulSbNm1SWFiYsrKyVFtb2/49AwAAPYbFMAyjvSsfO3ZMcXFxWrdunS655JJWa2bOnKnq6mq9/fbb3nkXXXSR0tLStHTpUhmGoaSkJN1555266667JEkul0vx8fFavny5rr322rO2w+12y+FwyOVyMegWAIBzhD/H7281hsXlckmSYmJiTluTl5enzMxMn3lZWVnKy8uTJB04cEBOp9OnxuFwKD093VsDAAB6t3bf1uzxeDR//nx95zvf0ahRo05b53Q6FR8f7zMvPj5eTqfTu/zkvNPVfFNdXZ3q6uq8n91ud7v2AQAAnBvafYZl3rx5Kigo0IoVKzqyPW2Sk5Mjh8PhnXjKLQAAPVu7Asvtt9+ut99+Wx988MFZH6WbkJCg4uJin3nFxcVKSEjwLj8573Q137RgwQK5XC7vdOjQofbsBgAAOEf4FVgMw9Dtt9+uN998U++//75SU1PPuk5GRoZyc3N95q1Zs0YZGRmSpNTUVCUkJPjUuN1ubdq0yVvzTTabzftUW55uCwBAz+fXGJZ58+bppZde0ltvvaWIiAjvGBOHw6GQkBBJ0uzZs9WvXz/l5ORIku644w5deuml+sMf/qDp06drxYoV2rJli5588klJzY/jnT9/vn71q19pyJAhSk1N1QMPPKCkpCTNmDGjA3cVAACcq/wKLE888YQk6bLLLvOZ/+yzz+qGG26QJBUWFvq8InrSpEl66aWXdP/99+u+++7TkCFDtHLlSp+Buvfcc4+qq6t1yy23qKKiQpMnT9bq1atlt9vbuVsAAKAn+VbPYTELnsMC9HyNTR5V1jYqOizYZ36Tx1Dh8Ro1eTwa1Df8rC9RMwxDpVX12ldSpS+OVamsql7/MeE89YsKUZPH0NGKE3LXNqi2oUm2QKuKXLUqPF6jiSkxGp4YoUPHa3SwrFpJUSEaFh+hYnedwu2BCrf1iHfJAl3Kn+M3/8IAdIrK2gbtPOrWnuJKTUiJ0fmJLX8ZGYahw+UntLPIrc+LKrWryK2dRW6VVdXpJ1MGK8Bi0Z7iSu12VmrfsSrVN3okSaP7OfTpkebnQNkCA1T31fwH/m2EYsKCtLe4SnuKq7SnuFKBARZdOzFZX5RUa9+xKu0rqZLrRINPO/74zz0anhChA6XV3m21JjDAokZPy//HC7cFat3dl6mytlEHyqp1sLRah8tPaMKAaJ1oaNLBsho5XSd055XDFB/JmWOgPTjDAuBbc51o0GdHXCo46tKnR9z67IhL+0t9X9kxYUC0Pjlcof/8Tqpq6pv0ubM5pFTWNXZ5ey0W6bzoEB06fuKMdaHBVvUJD/apCw4M8Aan9rj54lRlnt/83KnaRo/SzovSkYoTKjxerS/LalR4vHnqHxOqX80YddYzRsC5zJ/jN4EFgJdhGCpy1Sr/UIXyD1Xoc2elrhgRrynD+qpfVIgsFovKq+u/CiYufXbErU+PuFR4vKbd3xlsDdDguHCdnxip8xMjtOnAca3ZWazhCREaGh+hYV/9meiw6++fHFWYLVBD48N1pKJWydEhGhofoX/uKtavV+1SdGiwhsSFa0h8uAb3DdeT6/crwh6kwXHhGhQXrsFxzfMH9g2TPciqE/VNevbjAwq2BmjQV/PPiw6VRc2hRmq+MWBfSZWK3bVKjQ1TQqRdTYahT4+4FBUSpJ+/vkP/OlguSbIHBSilT5hcJxpU5KpVksOuAX3ClLe/7Fv9vcRH2nTH5UP1/9L7q8ljqNhdq0PHa3So/MRXf9bok0MVunRonGrqG3W4/IQOlFZrXP8oPfj9kYoNt51224ZhyHWiQYfLT6i8pl7j+ke3enmrtqFJRytO6GhFrY5WnNDxmnpNG5WgAX3CvtW+oXcjsAC9QJPH0K4itw6UVqviRIN2O93KP1ShS4b01T1Th0tqPhiV1zQoOjSo1f9Tr65r1I7DLuUfqtD2wnLlH6pQSWVdi7qT+kWF6EhF62clkmNCNLqfQyOTHF/9Gak+4TY9n3dQR8pP6FhVnd7/vESj+zk0IjHyq4ASqYF9wxRk/VZvCZEk1TU2jznpau7aBu1xVqpfdIjiI+wKCGj9jMjTH+7Xi5sKdaC0WtYAi5q+dmkpJixY/WNCvdOfP9jX6jZS+oTqSMUJNTS1/dd2pD1Qf//pZJVW1etIxQkdKT+hIxU1X/3Z/Lm6vslbHxZs1fzMoTpScaI5oLiaQ8rx6vpWtx9hD5Qt0Kq/Xn+BxiVHn3b/gdYQWIAeprHJo5LKOhW5arX5wHFtOlCmrQfLT3s5ZcG04dr6Zbm2fFmu49X1umFSimZemKzymnoVltV4z6DsKa7UN4dkWAMsGhYfoZTYUK36tPXXY6T0CdWofg6N6ncqnESFBrdaC18n6psUaLUoMMCiIletIuyBirAH+dSUVNbqs6Nu2awBWr+3VEvXfeGzPDDAoqSoECXHhCg5OlTHq5vDyPmJkTovOkSx4Tb9dvXnqqzt2MttYcFWJUWFqKSyrsU4IEn63ugEje4XJafrhI66alXf6NED/3a+BsdF6ER9k5zuWhW5TsjpqlWRq1aOkCAFBwaob7hNU4bHnfX7PR5DpdV1KnbVqdhdK6e7ViXuWvWNsCnMFqhid52CrBZdnzGgW8LrucgwDLlrG3W8ul7Hq+tUVdek8QNaP8tmGEaHX6IksADnkPpGj7YXluujfaWqqmvS3VnDFBwYoJ1H3crbX6q8L8r0r4PlqjpNOIm0B2pwXLiGxkdoxb/8f+pzksOutP5RSkuOUlpytEb1i1RocPMvK1dNgw6V1+jtHUWKDQ/WyCSHRvaLVOQ3DrDoPIZh6J1Pi1RT36Tk6FAlx4QoIdKuwDaclfr3Jz7W1i/LZbFIiZF29YsOUb+okK/+DD31OSpEDR6PfvLCNtU2NCkpKkRJUSHqF2X3/pwUFaJIe6D3gLX5wHGdaGjS47l7tfXL8jO2Iyo0SBU1LQPO1/3lugs0ND5Cxe5abxgpdtWq2F3X/LO7Vscq61od9PxNtsAAZV8xVBcMiNbgvuGyBQWoxF2nkso6lVQ2b7OkslbH3HWKsAfqF9NHeMcmlVXXqcRdp2OVdTpW9dXPVc3fXVLZPL/YXavM8+P1wwvOU2lVnTyGoavT+p32TrEmj6HymnqVVtWpsrZRo/s5ZA86FajqGptUVtW8vKyqXrbAAGUM6nPacHCivknlNfVfhYx6lVU3r1fb0KQZ4/opLDhQZdX13hBSVl2v41X1Kquu/2p+c/3x6nqV19S3esbuxxf1926/eWr++9tyf2aL2m+DwAKYmGEY2l9arQ/3HNOHe0uVt79MNV87JS81hxB3K/93HB0apImpMZqY2kfpqc133li/OgXv8Rj68TObtKe4UuP6R2vCgGiF2QJ1/8oC7/q2wACN698cTNKSozSufxR3rfRgjU0eFVfWKS7C1iGX3U4n74sy/WbVLoXZrEpyhCjBYdc/dhZrX0mVT11osFWJDrsiQ4L02RG3UmPDtLu40q/vCrBIseE2JTjsCg22asvBcqXGhik+0q4N+0rbvQ/RoUEqP0uoOpvrLxqg0GCrN+yUekNIXYszmSOTIlVT3+QNMd90Qf8ojUxy6HhNvSpq6lVe3aDymuaAUdvQ/kHfpxMWbPW5NNgai0Xa9+vveX/ndAQCC2AyFTX1+mhfmT7c2xxSvjkOpE9YsMq+MUYgwhaoiakxyhjURxcN7KMBfUIVFhzo9xiBnUfdCgiQhsRFKMAi7jpBl6hrbNKHe0oVFBigRIddCQ67ImyBLf77e3HTl/rFm82hOsIWqLjI5jASH2lXQmTzn/GR9q/m2dQ33Hbas0tfllXrxU2FenL9fgVbA1TfdOrAHhpsVVyETXERdvWNtCkuwqZnPzrYYhuBARbFhtsU99V3nfyzb4RNfSPssgUFKPuVfIUEWRUbYdOOw64O6a8gq0V9wmxyumvbXB8VGqw+YcGKDbfpYFnzrfQnRdgCFRPevDwmzNb8p/dz89QnzKY+4c0/24OsamjyaPE/98h9otFb880pLsLWob9DCCxABzlcXqPVBU5tKyzX9RelKGNQnzat19jk0fZDFVq3+5g+3HtMO4649PV/acHWAF2YGq2Lh/TVxUNidX5CpAqOurT844MaGh+hjIF9NDIpsk2n/YFzXVVdoyySwjr44Xvu2gYdq6xTfKS91cs1x6vr9fEXpXKEBKnvV2EmKiTI7/8pWLOzWC9s/FJRoUGK/SrcxIbbFBveHCbiImyKCQtWoDVAn3w1wL1vhL15eYRNsWE2RYY0h7mCIy49+9FBhQQHKCY0WFGhzUEhKjRIMWHBig4NVnRYsMKCrS2CQ2lVnRqbDEWHBZ0zY3gILMC3cKC0Wu8WFGl1gdPn/55sgQHa/atpp12vvLpe6/Yc0/ufl2jdnmMtBiUOi4/QxUNiNXlIrNJT+ygk+Nz4hQIAnYUn3QJn4PEY2lpYrrc/OapQW6B+ctkg/XNXsZ77+EvlH6rwqQ2wyHvtua7Ro2uWfqyquib91yUDdXVakj53Vur9z0v0wecl2lZY7nOd2hESpEuG9tWlQ/tq8uBYJTgYKwIA7cUZFvQa+49V6c3tR/Tm9iM+13q/yRpg0aRBfTRtVKKuHBmvkCCrRi56r0VdksOuoy7f683DEyI0ZXicvjs8TuOSo7ikAwBnwBkW9FpNHkMf7StVXaNHV4yI1/Hqev39k6N6Y/sRffK1syfhtkCf24STY0IUYLFo3pTBuuL8+BYv2Pufq0fqhY1fyn2i0Tso7qirVvagAE0aFKvvDo/TlOFx6hcV0iX7CQC9DWdYcM7ZW1ypf+ws1lVjktS/T6gk6dDxGr225ZD+b+th71mPIXHhOlBa7X1ugzXAokuGxOoHF5ynK86P17avnux62bC+GpEY2aaR77UNTbp/ZYHsQQG6fHi8Mgb18XmeAgCg7Rh0ix7jc6dblbWNGpcc5R1ncvK9LBemROuCAdH667r9Z9zG6H4O/WBcP101Nkl9I07/ThUAQNfikhA61Qe7S7THWanJQ2L17qdONRmGdhyu0NVp/fS90Ymnfdrj2TR5DK3ZWazD5TVKjgnV8o8OnvGlcf86WO596ZwkTR4cqx9dmKwdhyr0/u4STR2ZoB9e0E+D4yLa1R4AgHlwhgVtVlZVp0V/+0xv7yg6bc2IxEiN6x+laaMSNXlIbJu2W9fYpDe2HdFf132hg2Wnf+tvTFiwZk1MVlyEXYv+9pkkKdFh1xUj4nXzxQOVHBPq3w4BALoVZ1jQIRqaPPpw7zGN7x+j9XuPadHfPjvtG1tP2lnk1s4itwqOuvXJ4Qq9W1CkB6aPUFBggP65s1izM1K8t/eeqG/Sin8V6q/r9rf6dMf/unSgAr56kNIPxjWfvbEHWeXxGEqJDdPA2DBCCgD0EgQWtPoGzgOl1frx05taPEJ+eEKE0lNj9NlRt26cnNr8Zt+ECP3hH3v0t0+Oeus+OVThvStn5pMbvfOtARbdcslAvbCxUE9/uN/7OPr4SJtuvnigLhsWp11Fbn13eNxpn3oZEGDRpUP7dsSuAwDOEVwS6sWK3bWas2yzPndW6oZJKbrtskGKi7Dp9W1HtPCtAp8X8gUGWHT7dwfrJ5cNVnBgy2eLNDZ59OqWwyqvqdfv3tvd5jYkx4To1ksH6T/Gn3fOPEoaANAxuEsIZ1RSWavpj2/Qscq6M9ZF2ANVWduokUmR+v01Y3V+4tn7trahSTmrdmlAnzANjgvXf6/YrsmDY2UPsur/th721g3qG6Z5Uwbr+2OTeLgaAPRSjGGBJKm+0aMV/yrUoL7hSnTYNbBvuD53unXj8i1nDCvWAIuyrxiqWy8dpJr6RoW38obV07EHWfXQ1aO8n/MXXimp+TkpHo+hL4/X6MbJqZo6MsHvF4wBAHovAksPVdfYpB8s+Vg7i9ynrckaGa/7p49Q1uL13ss/EbZAPX/jRI3rH9382R7UIe1JjgnVozPTOmRbAIDeh8DSA9U2NOnWF7aeNqykp8bor9ePV1Ro8+PnN953uYKtAdr2ZbnGJkd1+CveAQD4tjgy9TC1DU265X+3av2eYwqwSLZAq040nBo8+8Nx/fTwv4/xGTgb+dVZlEmD2/bcFAAAuhqBpQepbWjSTc9t0YZ9pQoJsmrZDRcqY1AfGYah49X1ctc2KqVPaJvHowAAYBYElh6iocmj21/apg37ShUabNXyuRM1MTVGkmSxWNQn3KY+4bxHBwBwbuJ+0h7A4zF0z//t0D93lcgWGKBnb7jQG1YAAOgJCCznOMMw9ODfP9Ob248oMMCiJ358gdIH9unuZgEA0KEILOe4xf/cq+fzvpTFIv3hR2P13eHx3d0kAAA6HGNYzjHF7lrdv7JAV46Il8Vi0WO5eyVJ//P9kbo6rV83tw4AgM5BYDlH1Dd65HTVKvOP61Tf6NGancUKsjbf7TNvyiBdn5HSvQ0EAKAT+X1JaP369brqqquUlJQki8WilStXnrH+hhtukMViaTGNHDnSW/Pggw+2WD58+HC/d8YM6hqbWrzhuCO2edWfNuiS332g+kaPd35Dk6F/G5OoO68Y1qHfBwCA2fgdWKqrqzV27FgtWbKkTfWPPfaYioqKvNOhQ4cUExOja665xqdu5MiRPnUbNmzwt2ndpqHJI8MwdOern2jY/av1nYffV8ERV4dt/7fv7tbu4soW88f1j9LvrxnLO3kAAD2e35eEpk2bpmnTprW53uFwyOFweD+vXLlS5eXlmjt3rm9DAgOVkJDgb3O6XUllra7843plnh+v17edehvxuwVFGtXPcYY12+bDvce07KMD3s/XXzRAL276UuG2QD01e4LsQdZv/R0AAJhdl49heeaZZ5SZmakBAwb4zN+7d6+SkpJkt9uVkZGhnJwc9e/fv9Vt1NXVqa7u1NuG3e7Tv+Cvsz25br8qahr0f1sP+8wfEhfRpvV3HK7QuwVO3XH5kBbhw1XToLtf2yFJumb8ebr1skEa1DdcN12cqthwG+/8AQD0Gl16xDt69KjeffddvfTSSz7z09PTtXz5cg0bNkxFRUV66KGHdPHFF6ugoEARES0P/Dk5OXrooYe6pM1LPtinEnetHrp6VKvLvzxe0+r8t3cUaca4lnftNDZ5FGhtvhL36r8O6Z7XmwNJ33Cb/m1MovpG2PTz13fo/7YelsdoXic1NkwPXT1SocHNf10D+oR9290CAOCcYjEMw2j3yhaL3nzzTc2YMaNN9Tk5OfrDH/6go0ePKjg4+LR1FRUVGjBggB599FHdeOONLZa3doYlOTlZLpdLkZGRfu/HmaTc+44k6b35l2hYQsvwdOUf12lPcVWr6x58eLrP59UFTv33y9t1+3cH65V/HWoxONceFKDaBo++6c2fTNK4/tHt3QUAAEzJ7XbL4XC06fjdZWdYDMPQsmXLdP31158xrEhSVFSUhg4dqn379rW63GazyWbr2vfi1H7tjcdfd7Cs9TMsrbn1ha2SpEfX7DnNd7QMKz+acB5hBQDQ63XZk27XrVunffv2tXrG5Juqqqr0xRdfKDExsQta9u18/TbjM9nbyl0+Z3PDpBT9+gej/V4PAICexu/AUlVVpfz8fOXn50uSDhw4oPz8fBUWFkqSFixYoNmzZ7dY75lnnlF6erpGjWo5FuSuu+7SunXrdPDgQX388cf6wQ9+IKvVqlmzZvnbvC7lrm1oMe/eac3Pjwn8xq3G/7ftcItaSbrryqE+n8OCrdr/m+/pQM739OD3RyrIytsTAADw+5LQli1bNGXKFO/n7OxsSdKcOXO0fPlyFRUVecPLSS6XS6+//roee+yxVrd5+PBhzZo1S2VlZerbt68mT56sjRs3qm/fvv42r0sVtnI5KGtkgh5+93M1egw1eQxt2Feqn72Sr+PV9T51iQ67Fs9M08h+DgVZA/TUh/tVWlWvpdeP57kqAAB8g9+B5bLLLtOZxukuX768xTyHw6GamtOP9VixYoW/zehy39zjz466dN3Tm1rUfT1rrNtTov9cvsX7OTo0SBvvu1zuE43qG3FqDM5/XTpIM8b1k+tEg4bGt+12aAAAehMe5NFO0x9v+STe4QkRsuhUYlm/p9Rn+aTBsbIFWtU3ouXD3uIj7YqPtHd8QwEA6AEILB3g8uFxiou0678vH6yEr4WO5R8f9Km7aXJqF7cMAICegcDSAb57fpyuSx9w1jpuTwYAoH24BaUDJEeH+nxOT43x+RwbHqzXb8voyiYBANCjEFja6OsDjavqGn2WJcf4BpYLU04FlnBboDbdl6nxA3xDDAAAaDsCSzscq6zz+ZwU5TtYNibs1JN8vzO4j6zcpgwAwLdCYGmHEnetz2dboO9dPzMvTPb+PGVYXJe0CQCAnozA0g7HqurOuDw02KqBsWGyBQboe2PM/3oBAADMjruE2qHEfSqwDG/lDc4Wi0V/++lkeQxDkfagrmwaAAA9EoGlHU6eYYmLsOnlmy9qtSbcRtcCANBRuCTURl9/NP/JMyxzJqUo+msDbAEAQOcgsLTD18+wAACAzkdgaYcvSqokyecFhgAAoPMQWPzU5DF0pOKEJCkyhAG1AAB0BQKLnypq6r0/9//GE24BAEDnILC00ckn85d/LbDEhnNJCACArkBg8VNZVXNgSY0N6+aWAADQexBY/HTyDEt0KONXAADoKgQWP5VVNweWmDAuBwEA0FUILH56YGWBJOlweU03twQAgN6DwOInz1eDbz93VnZvQwAA6EUILAAAwPQILO209McXdHcTAADoNQgsfjr5FuZhCZHd3BIAAHoPAosfauobVVXXKEmK4rH8AAB0GQKLHx7L3ev9mfcIAQDQdQgsbWZo68Fy7ydrgKUb2wIAQO9CYPFDTX1TdzcBAIBeicDihytGxHd3EwAA6JUILH5o9HgkSTdMSunehgAA0MsQWPxQVdt8h9DJW5sBAEDXILC0kWFIlV8Flgg7gQUAgK7kd2BZv369rrrqKiUlJclisWjlypVnrF+7dq0sFkuLyel0+tQtWbJEKSkpstvtSk9P1+bNm/1tWqer/OoZLOEEFgAAupTfgaW6ulpjx47VkiVL/Fpv9+7dKioq8k5xcXHeZa+88oqys7O1aNEibdu2TWPHjlVWVpZKSkr8bV6n4pIQAADdw+8j77Rp0zRt2jS/vyguLk5RUVGtLnv00Ud18803a+7cuZKkpUuX6p133tGyZct07733+v1dnaWyrkGSFGnnoXEAAHSlLhvDkpaWpsTERF1xxRX66KOPvPPr6+u1detWZWZmnmpUQIAyMzOVl5fX6rbq6urkdrt9pq7gPcPCJSEAALpUpweWxMRELV26VK+//rpef/11JScn67LLLtO2bdskSaWlpWpqalJ8vO8zTuLj41uMczkpJydHDofDOyUnJ3f2bsiQdLCsRhKXhAAA6GqdfuQdNmyYhg0b5v08adIkffHFF/rjH/+o//3f/23XNhcsWKDs7GzvZ7fb3emh5WBptfdn7hICAKBrdcuRd+LEidqwYYMkKTY2VlarVcXFxT41xcXFSkhIaHV9m80mm83W6e38uk8OV3h/jrAxhgUAgK7ULc9hyc/PV2JioiQpODhY48ePV25urne5x+NRbm6uMjIyuqN5rXphY6H35zCbtRtbAgBA7+P3GZaqqirt27fP+/nAgQPKz89XTEyM+vfvrwULFujIkSN6/vnnJUmLFy9WamqqRo4cqdraWj399NN6//339Y9//MO7jezsbM2ZM0cTJkzQxIkTtXjxYlVXV3vvGjKbQCvP2wMAoCv5HVi2bNmiKVOmeD+fHEsyZ84cLV++XEVFRSosPHU2or6+XnfeeaeOHDmi0NBQjRkzRv/85z99tjFz5kwdO3ZMCxculNPpVFpamlavXt1iIC4AAOidLIZhGN3diG/L7XbL4XDI5XIpMjKyQ7edcu87LeYdfHh6h34HAAC9kT/Hb65tAAAA0yOwAAAA0yOwAAAA0yOw+OkX3zu/u5sAAECvQ2Dx0+Qhsd3dBAAAeh0Ci5/sQTw0DgCArkZg8ZM9iC4DAKCrcfT1kz2QMywAAHQ1AoufuCQEAEDXI7D4KTiQLgMAoKtx9PWTNcDS3U0AAKDXIbD44YZJKd3dBAAAeiUCix+4HAQAQPfgCOyHICuXgwAA6A4EFj8EW7lDCACA7kBg8UNQIGdYAADoDgQWPwRb6S4AALoDR2A/MOgWAIDuwRHYD0GcYQEAoFtwBPbD4fKa7m4CAAC9EoHFD+v3lHZ3EwAA6JUILH6wMYYFAIBuwRHYDwy6BQCge3AE9kN0WHB3NwEAgF6JwOKH2y4d1N1NAACgVyKw+MEREtTdTQAAoFcisPiB57AAANA9OAL7wRrAu4QAAOgOBBY/EFgAAOgeBBY/WC0EFgAAugOBxQ8B9BYAAN2CQ7AfuCQEAED38DuwrF+/XldddZWSkpJksVi0cuXKM9a/8cYbuuKKK9S3b19FRkYqIyND7733nk/Ngw8+KIvF4jMNHz7c36Z1ugAuCQEA0C38DizV1dUaO3aslixZ0qb69evX64orrtCqVau0detWTZkyRVdddZW2b9/uUzdy5EgVFRV5pw0bNvjbtE7HGRYAALpHoL8rTJs2TdOmTWtz/eLFi30+/+Y3v9Fbb72lv//97xo3btyphgQGKiEhwd/mdCkG3QIA0D26fAyLx+NRZWWlYmJifObv3btXSUlJGjhwoK677joVFhaedht1dXVyu90+U1cI4AwLAADdossDy+9//3tVVVXpRz/6kXdeenq6li9frtWrV+uJJ57QgQMHdPHFF6uysrLVbeTk5MjhcHin5OTkrmo+AADoBl0aWF566SU99NBDevXVVxUXF+edP23aNF1zzTUaM2aMsrKytGrVKlVUVOjVV19tdTsLFiyQy+XyTocOHeqqXQAAAN3A7zEs7bVixQrddNNNeu2115SZmXnG2qioKA0dOlT79u1rdbnNZpPNZuuMZgIAABPqkjMsL7/8subOnauXX35Z06dPP2t9VVWVvvjiCyUmJnZB6wAAgNn5fYalqqrK58zHgQMHlJ+fr5iYGPXv318LFizQkSNH9Pzzz0tqvgw0Z84cPfbYY0pPT5fT6ZQkhYSEyOFwSJLuuusuXXXVVRowYICOHj2qRYsWyWq1atasWR2xjwAA4Bzn9xmWLVu2aNy4cd5bkrOzszVu3DgtXLhQklRUVORzh8+TTz6pxsZGzZs3T4mJid7pjjvu8NYcPnxYs2bN0rBhw/SjH/1Iffr00caNG9W3b99vu38AAKAHsBiGYXR3I74tt9sth8Mhl8ulyMjIDt12yr3veH8++PDZL2cBAIC28ef4zbuEAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFY2mjqyITubgIAAL0WgaWNLJbubgEAAL0XgaWNCCwAAHQfAksbWURiAQCgu/gdWNavX6+rrrpKSUlJslgsWrly5VnXWbt2rS644ALZbDYNHjxYy5cvb1GzZMkSpaSkyG63Kz09XZs3b/a3aQAAoIfyO7BUV1dr7NixWrJkSZvqDxw4oOnTp2vKlCnKz8/X/PnzddNNN+m9997z1rzyyivKzs7WokWLtG3bNo0dO1ZZWVkqKSnxt3kAAKAHshiGYbR7ZYtFb775pmbMmHHamp///Od65513VFBQ4J137bXXqqKiQqtXr5Ykpaen68ILL9Sf//xnSZLH41FycrJ++tOf6t577z1rO9xutxwOh1wulyIjI9u7O61KufcdSdL0MYla8v8u6NBtAwDQm/lz/O70MSx5eXnKzMz0mZeVlaW8vDxJUn19vbZu3epTExAQoMzMTG/NN9XV1cntdvtMAACg5+r0wOJ0OhUfH+8zLz4+Xm63WydOnFBpaamampparXE6na1uMycnRw6HwzslJyd3WvsBAED3OyfvElqwYIFcLpd3OnToUKd/J/cIAQDQfQI7+wsSEhJUXFzsM6+4uFiRkZEKCQmR1WqV1WpttSYhofWny9psNtlstk5rMwAAMJdOP8OSkZGh3Nxcn3lr1qxRRkaGJCk4OFjjx4/3qfF4PMrNzfXWAACA3s3vwFJVVaX8/Hzl5+dLar5tOT8/X4WFhZKaL9fMnj3bW3/rrbdq//79uueee/T555/rL3/5i1599VX97Gc/89ZkZ2frqaee0nPPPaddu3bptttuU3V1tebOnfstdw8AAPQEfl8S2rJli6ZMmeL9nJ2dLUmaM2eOli9frqKiIm94kaTU1FS98847+tnPfqbHHntM5513np5++mllZWV5a2bOnKljx45p4cKFcjqdSktL0+rVq1sMxAUAAL3Tt3oOi1l0xXNY/m1Mov7Mc1gAAOgwpnoOS09h4e2HAAB0GwLLGfSAk08AAPQIBBYAAGB6BBYAAGB6BJY2YgQLAADdh8DSRrdcMrC7mwAAQK9FYGmjRIe9u5sAAECvRWABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2BpI4uFtwkBANBdCCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCxnYBjd3QIAACARWAAAwDmAwAIAAEyvXYFlyZIlSklJkd1uV3p6ujZv3nza2ssuu0wWi6XFNH36dG/NDTfc0GL51KlT29M0AADQAwX6u8Irr7yi7OxsLV26VOnp6Vq8eLGysrK0e/duxcXFtah/4403VF9f7/1cVlamsWPH6pprrvGpmzp1qp599lnvZ5vN5m/TAABAD+X3GZZHH31UN998s+bOnasRI0Zo6dKlCg0N1bJly1qtj4mJUUJCgndas2aNQkNDWwQWm83mUxcdHd2+PQIAAD2OX4Glvr5eW7duVWZm5qkNBAQoMzNTeXl5bdrGM888o2uvvVZhYWE+89euXau4uDgNGzZMt912m8rKyk67jbq6Orndbp8JAAD0XH4FltLSUjU1NSk+Pt5nfnx8vJxO51nX37x5swoKCnTTTTf5zJ86daqef/555ebm6re//a3WrVunadOmqampqdXt5OTkyOFweKfk5GR/dgMAAJxj/B7D8m0888wzGj16tCZOnOgz/9prr/X+PHr0aI0ZM0aDBg3S2rVrdfnll7fYzoIFC5Sdne397Ha7CS0AAPRgfp1hiY2NldVqVXFxsc/84uJiJSQknHHd6upqrVixQjfeeONZv2fgwIGKjY3Vvn37Wl1us9kUGRnpMwEAgJ7Lr8ASHBys8ePHKzc31zvP4/EoNzdXGRkZZ1z3tddeU11dnX784x+f9XsOHz6ssrIyJSYm+tM8AADQQ/l9l1B2draeeuopPffcc9q1a5duu+02VVdXa+7cuZKk2bNna8GCBS3We+aZZzRjxgz16dPHZ35VVZXuvvtubdy4UQcPHlRubq6uvvpqDR48WFlZWe3cLQAA0JP4PYZl5syZOnbsmBYuXCin06m0tDStXr3aOxC3sLBQAQG+OWj37t3asGGD/vGPf7TYntVq1Y4dO/Tcc8+poqJCSUlJuvLKK/XLX/7SVM9isXR3AwAA6MUshnHuv+LP7XbL4XDI5XJ16HgWj8fQwPtWSZK2P3CFosOCO2zbAAD0dv4cv3mXEAAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0Cyxmc86+xBgCghyCwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwtJHF0t0tAACg9yKwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA02tXYFmyZIlSUlJkt9uVnp6uzZs3n7Z2+fLlslgsPpPdbvepMQxDCxcuVGJiokJCQpSZmam9e/e2p2kAAKAH8juwvPLKK8rOztaiRYu0bds2jR07VllZWSopKTntOpGRkSoqKvJOX375pc/yRx55RI8//riWLl2qTZs2KSwsTFlZWaqtrfV/jwAAQI/jd2B59NFHdfPNN2vu3LkaMWKEli5dqtDQUC1btuy061gsFiUkJHin+Ph47zLDMLR48WLdf//9uvrqqzVmzBg9//zzOnr0qFauXNmunQIAAD2LX4Glvr5eW7duVWZm5qkNBAQoMzNTeXl5p12vqqpKAwYMUHJysq6++mp99tln3mUHDhyQ0+n02abD4VB6evppt1lXVye32+0zAQCAnsuvwFJaWqqmpiafMySSFB8fL6fT2eo6w4YN07Jly/TWW2/phRdekMfj0aRJk3T48GFJ8q7nzzZzcnLkcDi8U3Jysj+7AQAAzjGdfpdQRkaGZs+erbS0NF166aV644031LdvX/31r39t9zYXLFggl8vlnQ4dOtSBLQYAAGbjV2CJjY2V1WpVcXGxz/zi4mIlJCS0aRtBQUEaN26c9u3bJ0ne9fzZps1mU2RkpM8EAAB6Lr8CS3BwsMaPH6/c3FzvPI/Ho9zcXGVkZLRpG01NTfr000+VmJgoSUpNTVVCQoLPNt1utzZt2tTmbQIAgJ4t0N8VsrOzNWfOHE2YMEETJ07U4sWLVV1drblz50qSZs+erX79+iknJ0eS9D//8z+66KKLNHjwYFVUVOh3v/udvvzyS910002Smu8gmj9/vn71q19pyJAhSk1N1QMPPKCkpCTNmDGj4/a0HQzD6NbvBwAAzfwOLDNnztSxY8e0cOFCOZ1OpaWlafXq1d5Bs4WFhQoIOHXipry8XDfffLOcTqeio6M1fvx4ffzxxxoxYoS35p577lF1dbVuueUWVVRUaPLkyVq9enWLB8wBAIDeyWL0gNMIbrdbDodDLperQ8ezNDZ5NPgX70qS8hdeoajQ4A7bNgAAvZ0/x2/eJQQAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwNJGFlm6uwkAAPRaBBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BJYzMLq7AQAAQBKBBQAAnAMILAAAwPQILAAAwPQILAAAwPQILAAAwPQILG1l6e4GAADQe7UrsCxZskQpKSmy2+1KT0/X5s2bT1v71FNP6eKLL1Z0dLSio6OVmZnZov6GG26QxWLxmaZOndqepgEAgB7I78DyyiuvKDs7W4sWLdK2bds0duxYZWVlqaSkpNX6tWvXatasWfrggw+Ul5en5ORkXXnllTpy5IhP3dSpU1VUVOSdXn755fbtEQAA6HH8DiyPPvqobr75Zs2dO1cjRozQ0qVLFRoaqmXLlrVa/+KLL+onP/mJ0tLSNHz4cD399NPyeDzKzc31qbPZbEpISPBO0dHR7dsjAADQ4/gVWOrr67V161ZlZmae2kBAgDIzM5WXl9embdTU1KihoUExMTE+89euXau4uDgNGzZMt912m8rKyvxpGgAA6MEC/SkuLS1VU1OT4uPjfebHx8fr888/b9M2fv7znyspKckn9EydOlU//OEPlZqaqi+++EL33Xefpk2bpry8PFmt1hbbqKurU11dnfez2+32ZzcAAMA5xq/A8m09/PDDWrFihdauXSu73e6df+2113p/Hj16tMaMGaNBgwZp7dq1uvzyy1tsJycnRw899FCXtBkAAHQ/vy4JxcbGymq1qri42Gd+cXGxEhISzrju73//ez388MP6xz/+oTFjxpyxduDAgYqNjdW+fftaXb5gwQK5XC7vdOjQIX92AwAAnGP8CizBwcEaP368z4DZkwNoMzIyTrveI488ol/+8pdavXq1JkyYcNbvOXz4sMrKypSYmNjqcpvNpsjISJ8JAAD0XH7fJZSdna2nnnpKzz33nHbt2qXbbrtN1dXVmjt3riRp9uzZWrBggbf+t7/9rR544AEtW7ZMKSkpcjqdcjqdqqqqkiRVVVXp7rvv1saNG3Xw4EHl5ubq6quv1uDBg5WVldVBuwkAAM5lfo9hmTlzpo4dO6aFCxfK6XQqLS1Nq1ev9g7ELSwsVEDAqRz0xBNPqL6+Xv/xH//hs51FixbpwQcflNVq1Y4dO/Tcc8+poqJCSUlJuvLKK/XLX/5SNpvtW+4eAADoCSyGYRjd3Yhvy+12y+FwyOVydejloYYmj4b84l1J0ieLrpQjJKjDtg0AQG/nz/GbdwkBAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7Ccwbn/0gIAAHoGAgsAADA9AgsAADA9AksbWSzd3QIAAHovAgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADC9dgWWJUuWKCUlRXa7Xenp6dq8efMZ61977TUNHz5cdrtdo0eP1qpVq3yWG4ahhQsXKjExUSEhIcrMzNTevXvb0zQAANAD+R1YXnnlFWVnZ2vRokXatm2bxo4dq6ysLJWUlLRa//HHH2vWrFm68cYbtX37ds2YMUMzZsxQQUGBt+aRRx7R448/rqVLl2rTpk0KCwtTVlaWamtr279nAACgx7AYhmH4s0J6erouvPBC/fnPf5YkeTweJScn66c//anuvffeFvUzZ85UdXW13n77be+8iy66SGlpaVq6dKkMw1BSUpLuvPNO3XXXXZIkl8ul+Ph4LV++XNdee+1Z2+R2u+VwOORyuRQZGenP7pxRfaNHQ+9/V5K048ErFWkP6rBtAwDQ2/lz/PbrDEt9fb22bt2qzMzMUxsICFBmZqby8vJaXScvL8+nXpKysrK89QcOHJDT6fSpcTgcSk9PP+026+rq5Ha7fSYAANBz+RVYSktL1dTUpPj4eJ/58fHxcjqdra7jdDrPWH/yT3+2mZOTI4fD4Z2Sk5P92Q0AAHCOOSfvElqwYIFcLpd3OnToUKd8T4BFmjdlkOZNGaRg6znZVQAA9AiB/hTHxsbKarWquLjYZ35xcbESEhJaXSchIeGM9Sf/LC4uVmJiok9NWlpaq9u02Wyy2Wz+NL1dAq0BujtreKd/DwAAODO/ThsEBwdr/Pjxys3N9c7zeDzKzc1VRkZGq+tkZGT41EvSmjVrvPWpqalKSEjwqXG73dq0adNptwkAAHoXv86wSFJ2drbmzJmjCRMmaOLEiVq8eLGqq6s1d+5cSdLs2bPVr18/5eTkSJLuuOMOXXrppfrDH/6g6dOna8WKFdqyZYuefPJJSZLFYtH8+fP1q1/9SkOGDFFqaqoeeOABJSUlacaMGR23pwAA4Jzld2CZOXOmjh07poULF8rpdCotLU2rV6/2DpotLCxUQMCpEzeTJk3SSy+9pPvvv1/33XefhgwZopUrV2rUqFHemnvuuUfV1dW65ZZbVFFRocmTJ2v16tWy2+0dsIsAAOBc5/dzWMyos57DAgAAOk+nPYcFAACgOxBYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6fn9aH4zOvmwXrfb3c0tAQAAbXXyuN2Wh+73iMBSWVkpSUpOTu7mlgAAAH9VVlbK4XCcsaZHvEvI4/Ho6NGjioiIkMVi6dBtu91uJScn69ChQ7ynqBPRz12Dfu469HXXoJ+7Rmf1s2EYqqysVFJSks+Lk1vTI86wBAQE6LzzzuvU74iMjOQfQxegn7sG/dx16OuuQT93jc7o57OdWTmJQbcAAMD0CCwAAMD0CCxnYbPZtGjRItlstu5uSo9GP3cN+rnr0Nddg37uGmbo5x4x6BYAAPRsnGEBAACmR2ABAACmR2ABAACmR2ABAACmR2A5iyVLliglJUV2u13p6enavHlzdzfJtHJycnThhRcqIiJCcXFxmjFjhnbv3u1TU1tbq3nz5qlPnz4KDw/Xv//7v6u4uNinprCwUNOnT1doaKji4uJ09913q7Gx0adm7dq1uuCCC2Sz2TR48GAtX768s3fPtB5++GFZLBbNnz/fO49+7hhHjhzRj3/8Y/Xp00chISEaPXq0tmzZ4l1uGIYWLlyoxMREhYSEKDMzU3v37vXZxvHjx3XdddcpMjJSUVFRuvHGG1VVVeVTs2PHDl188cWy2+1KTk7WI4880iX7ZwZNTU164IEHlJqaqpCQEA0aNEi//OUvfd4tQz+3z/r163XVVVcpKSlJFotFK1eu9Fnelf362muvafjw4bLb7Ro9erRWrVrl/w4ZOK0VK1YYwcHBxrJly4zPPvvMuPnmm42oqCijuLi4u5tmSllZWcazzz5rFBQUGPn5+cb3vvc9o3///kZVVZW35tZbbzWSk5ON3NxcY8uWLcZFF11kTJo0ybu8sbHRGDVqlJGZmWls377dWLVqlREbG2ssWLDAW7N//34jNDTUyM7ONnbu3Gn86U9/MqxWq7F69eou3V8z2Lx5s5GSkmKMGTPGuOOOO7zz6edv7/jx48aAAQOMG264wdi0aZOxf/9+47333jP27dvnrXn44YcNh8NhrFy50vjkk0+M73//+0Zqaqpx4sQJb83UqVONsWPHGhs3bjQ+/PBDY/DgwcasWbO8y10ulxEfH29cd911RkFBgfHyyy8bISEhxl//+tcu3d/u8utf/9ro06eP8fbbbxsHDhwwXnvtNSM8PNx47LHHvDX0c/usWrXK+MUvfmG88cYbhiTjzTff9FneVf360UcfGVar1XjkkUeMnTt3Gvfff78RFBRkfPrpp37tD4HlDCZOnGjMmzfP+7mpqclISkoycnJyurFV546SkhJDkrFu3TrDMAyjoqLCCAoKMl577TVvza5duwxJRl5enmEYzf/AAgICDKfT6a154oknjMjISKOurs4wDMO45557jJEjR/p818yZM42srKzO3iVTqaysNIYMGWKsWbPGuPTSS72BhX7uGD//+c+NyZMnn3a5x+MxEhISjN/97nfeeRUVFYbNZjNefvllwzAMY+fOnYYk41//+pe35t133zUsFotx5MgRwzAM4y9/+YsRHR3t7feT3z1s2LCO3iVTmj59uvGf//mfPvN++MMfGtddd51hGPRzR/lmYOnKfv3Rj35kTJ8+3ac96enpxn/913/5tQ9cEjqN+vp6bd26VZmZmd55AQEByszMVF5eXje27NzhcrkkSTExMZKkrVu3qqGhwadPhw8frv79+3v7NC8vT6NHj1Z8fLy3JisrS263W5999pm35uvbOFnT2/5e5s2bp+nTp7foC/q5Y/ztb3/ThAkTdM011yguLk7jxo3TU0895V1+4MABOZ1Onz5yOBxKT0/36eeoqChNmDDBW5OZmamAgABt2rTJW3PJJZcoODjYW5OVlaXdu3ervLy8s3ez202aNEm5ubnas2ePJOmTTz7Rhg0bNG3aNEn0c2fpyn7tqN8lBJbTKC0tVVNTk88vdEmKj4+X0+nspladOzwej+bPn6/vfOc7GjVqlCTJ6XQqODhYUVFRPrVf71On09lqn59cdqYat9utEydOdMbumM6KFSu0bds25eTktFhGP3eM/fv364knntCQIUP03nvv6bbbbtN///d/67nnnpN0qp/O9DvC6XQqLi7OZ3lgYKBiYmL8+rvoye69915de+21Gj58uIKCgjRu3DjNnz9f1113nST6ubN0Zb+ersbffu8Rb2uG+cybN08FBQXasGFDdzelxzl06JDuuOMOrVmzRna7vbub02N5PB5NmDBBv/nNbyRJ48aNU0FBgZYuXao5c+Z0c+t6jldffVUvvviiXnrpJY0cOVL5+fmaP3++kpKS6Gf44AzLacTGxspqtba4s6K4uFgJCQnd1Kpzw+233663335bH3zwgc477zzv/ISEBNXX16uiosKn/ut9mpCQ0Gqfn1x2pprIyEiFhIR09O6YztatW1VSUqILLrhAgYGBCgwM1Lp16/T4448rMDBQ8fHx9HMHSExM1IgRI3zmnX/++SosLJR0qp/O9DsiISFBJSUlPssbGxt1/Phxv/4uerK7777be5Zl9OjRuv766/Wzn/3Me/aQfu4cXdmvp6vxt98JLKcRHBys8ePHKzc31zvP4/EoNzdXGRkZ3dgy8zIMQ7fffrvefPNNvf/++0pNTfVZPn78eAUFBfn06e7du1VYWOjt04yMDH366ac+/0jWrFmjyMhI78EjIyPDZxsna3rL38vll1+uTz/9VPn5+d5pwoQJuu6667w/08/f3ne+850Wt+Xv2bNHAwYMkCSlpqYqISHBp4/cbrc2bdrk088VFRXaunWrt+b999+Xx+NRenq6t2b9+vVqaGjw1qxZs0bDhg1TdHR0p+2fWdTU1CggwPdQZLVa5fF4JNHPnaUr+7XDfpf4NUS3l1mxYoVhs9mM5cuXGzt37jRuueUWIyoqyufOCpxy2223GQ6Hw1i7dq1RVFTknWpqarw1t956q9G/f3/j/fffN7Zs2WJkZGQYGRkZ3uUnb7e98sorjfz8fGP16tVG3759W73d9u677zZ27dplLFmypFfdbtuar98lZBj0c0fYvHmzERgYaPz617829u7da7z44otGaGio8cILL3hrHn74YSMqKsp46623jB07dhhXX311q7eFjhs3zti0aZOxYcMGY8iQIT63hVZUVBjx8fHG9ddfbxQUFBgrVqwwQkNDe/Tttl83Z84co1+/ft7bmt944w0jNjbWuOeee7w19HP7VFZWGtu3bze2b99uSDIeffRRY/v27caXX35pGEbX9etHH31kBAYGGr///e+NXbt2GYsWLeK25s7wpz/9yejfv78RHBxsTJw40di4cWN3N8m0JLU6Pfvss96aEydOGD/5yU+M6OhoIzQ01PjBD35gFBUV+Wzn4MGDxrRp04yQkBAjNjbWuPPOO42Ghgafmg8++MBIS0szgoODjYEDB/p8R2/0zcBCP3eMv//978aoUaMMm81mDB8+3HjyySd9lns8HuOBBx4w4uPjDZvNZlx++eXG7t27fWrKysqMWbNmGeHh4UZkZKQxd+5co7Ky0qfmk08+MSZPnmzYbDajX79+xsMPP9zp+2YWbrfbuOOOO4z+/fsbdrvdGDhwoPGLX/zC5zZZ+rl9Pvjgg1Z/J8+ZM8cwjK7t11dffdUYOnSoERwcbIwcOdJ45513/N4fi2F87XGCAAAAJsQYFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHr/HxHiLTzUdkQeAAAAAElFTkSuQmCC"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.plot(big.fd.index, big.fd)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"outputs": [],
|
||
"source": [
|
||
"spm = read_xy(\"/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/rust-codebase/spm.csv\")"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 40,
|
||
"outputs": [],
|
||
"source": [
|
||
"spm['angle'] = np.arctan2(spm.y, spm.x)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 49,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "<Axes: >"
|
||
},
|
||
"execution_count": 49,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmhklEQVR4nO3df1BV953/8dcF4RoiqKiITEDRtjFdG5NooTbZLERRsWNiS7M1pC0xGU0y6kxgtk3oxAra3VibtW5dNvZXtDuVNe1u0E3SaohGaSZooy7jmm2d4pgao2iMAwSYXK/c8/0j4/2GgAcu3st5g8/HzB0953zuOe/75nMurzn3cq/PcRxHAAAAhsR5XQAAAMCnEVAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmDPM6wL6IxQK6cyZM0pOTpbP5/O6HAAA0AeO4+jDDz9URkaG4uLcr5EMyoBy5swZZWZmel0GAADoh3fffVc33XST65hBGVCSk5MlffwAU1JSBvz4wWBQr776qubOnauEhIQBP7519Mcd/XFHf9zRH3f0x53X/WltbVVmZmb497ibQRlQrrysk5KS4llASUpKUkpKCidAD+iPO/rjjv64oz/u6I87K/3py9szeJMsAAAwh4ACAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMyJOKDU1dVp4cKFysjIkM/n044dO7ps9/l8Pd5+9KMfhcdMmjSp2/Z169Zd84MBAABDQ8QBpb29XdOnT1dVVVWP28+ePdvl9vzzz8vn86moqKjLuDVr1nQZt3Llyv49AgAAMORE/EFthYWFKiwsvOr29PT0Lss7d+5Ufn6+Jk+e3GV9cnJyt7EAAABSjD9J9ty5c3rllVf0q1/9qtu2devWae3atcrKylJxcbFKS0s1bFjP5QQCAQUCgfBya2urpI8/ES8YDMameBdXjunFsQcD+uOO/rijP+7ojzv6487r/kRyXJ/jOE5/D+Tz+VRTU6NFixb1uH39+vVat26dzpw5o+HDh4fXb9iwQXfccYdSU1P15ptvqry8XEuWLNGGDRt63E9FRYUqKyu7ra+urlZSUlJ/ywcAAAOoo6NDxcXFamlp6fWramIaUKZOnaqCggJt2rTJdT/PP/+8Hn30UbW1tcnv93fb3tMVlMzMTF24cMGz7+Kpra1VQUEB3/XQA/rjjv64oz/u6I87+uPO6/60trZq7NixfQooMXuJ5w9/+IOOHz+uF154odexubm5unz5st555x3dfPPN3bb7/f4eg0tCQoKnE9Dr41tHf9zRH3f0xx39cUd/3HnVn0iOGbPPQfnlL3+pGTNmaPr06b2ObWhoUFxcnNLS0mJVDgAAGEQivoLS1tamxsbG8PLJkyfV0NCg1NRUZWVlSfr4Es5vf/tb/fM//3O3+9fX1+vgwYPKz89XcnKy6uvrVVpaqm9+85saPXr0NTwUDDaTnnrF6xIi9s66r3hdAgBcFyIOKIcOHVJ+fn54uaysTJJUUlKirVu3SpK2b98ux3H0wAMPdLu/3+/X9u3bVVFRoUAgoOzsbJWWlob3AwAAEHFAycvLU2/vq122bJmWLVvW47Y77rhDBw4ciPSwAADgOsJ38QAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzBnmdQEAAAxlk556xesSwvzxjtbnSNMqdivQ6XMd+866rwxQVT3jCgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzIg4odXV1WrhwoTIyMuTz+bRjx44u2x966CH5fL4ut/nz53cZc/HiRT344INKSUnRqFGj9Mgjj6itre2aHggAABg6Ig4o7e3tmj59uqqqqq46Zv78+Tp79mz49h//8R9dtj/44IN6++23VVtbq5dffll1dXVatmxZ5NUDAIAhaVikdygsLFRhYaHrGL/fr/T09B63/elPf9KuXbv01ltvaebMmZKkTZs2acGCBXr22WeVkZERaUkAAGCIiTig9MW+ffuUlpam0aNH65577tEPfvADjRkzRpJUX1+vUaNGhcOJJM2ZM0dxcXE6ePCgvvrVr3bbXyAQUCAQCC+3trZKkoLBoILBYCwegqsrx/Ti2INBX/vjj3cGopyoisbPnPnjjv64oz/uLPbH0nOdP87p8q+bWPQwkn36HMfpd+d8Pp9qamq0aNGi8Lrt27crKSlJ2dnZOnHihL73ve9pxIgRqq+vV3x8vP7pn/5Jv/rVr3T8+PEu+0pLS1NlZaUef/zxbsepqKhQZWVlt/XV1dVKSkrqb/kAAGAAdXR0qLi4WC0tLUpJSXEdG/UrKIsXLw7//wtf+IJuvfVWTZkyRfv27dPs2bP7tc/y8nKVlZWFl1tbW5WZmam5c+f2+gBjIRgMqra2VgUFBUpISBjw41vX1/5Mq9g9gFVFx7GKede8D+aPO/rjjv64s9gfS891/jhHa2eGtOpQnAIhn+vYaDzffdqVV0D6IiYv8XzS5MmTNXbsWDU2Nmr27NlKT0/X+fPnu4y5fPmyLl68eNX3rfj9fvn9/m7rExISPJ2AXh/fut76E+h0PzksiubPm/njjv64oz/uLPXH4nNdIOTrta5Y9C+Sfcb8c1BOnz6tDz74QBMmTJAkzZo1S83NzTp8+HB4zN69exUKhZSbmxvrcgAAwCAQ8RWUtrY2NTY2hpdPnjyphoYGpaamKjU1VZWVlSoqKlJ6erpOnDih7373u/rMZz6jefM+vlR0yy23aP78+Vq6dKk2b96sYDCoFStWaPHixfwFDwAAkNSPKyiHDh3S7bffrttvv12SVFZWpttvv13f//73FR8fr6NHj+ree+/V5z73OT3yyCOaMWOG/vCHP3R5iWbbtm2aOnWqZs+erQULFuiuu+7Sz372s+g9KgAAMKhFfAUlLy9Pbn/4s3t3728GSk1NVXV1daSHBgAA1wm+iwcAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYE7EAaWurk4LFy5URkaGfD6fduzYEd4WDAb15JNP6gtf+IJuvPFGZWRk6Nvf/rbOnDnTZR+TJk2Sz+frclu3bt01PxgAADA0RBxQ2tvbNX36dFVVVXXb1tHRoSNHjmjVqlU6cuSIXnzxRR0/flz33ntvt7Fr1qzR2bNnw7eVK1f27xEAAIAhZ1ikdygsLFRhYWGP20aOHKna2tou6/71X/9VOTk5OnXqlLKyssLrk5OTlZ6eHunhAQDAdSDigBKplpYW+Xw+jRo1qsv6devWae3atcrKylJxcbFKS0s1bFjP5QQCAQUCgfBya2urpI9fUgoGgzGr/WquHNOLYw8Gfe2PP94ZiHKiKho/c+aPO/rjjv64s9gfS891/jiny79uYtHDSPbpcxyn353z+XyqqanRokWLetz+0Ucf6c4779TUqVO1bdu28PoNGzbojjvuUGpqqt58802Vl5dryZIl2rBhQ4/7qaioUGVlZbf11dXVSkpK6m/5AABgAHV0dKi4uFgtLS1KSUlxHRuzgBIMBlVUVKTTp09r3759roU8//zzevTRR9XW1ia/399te09XUDIzM3XhwoVeH2AsBINB1dbWqqCgQAkJCQN+fOv62p9pFbsHsKroOFYx75r3wfxxN1j7M1Dz2R/naO3MkFYdilMg5LumfUVjPltjcf5Yeq6LZP7EYn60trZq7NixfQooMXmJJxgM6u///u/117/+VXv37u21iNzcXF2+fFnvvPOObr755m7b/X5/j8ElISHB0wno9fGt660/gc5re3L1QjR/3swfd4OtPwM9nwMh3zUfczD1N1KW5o/F57q+zJ9Y9C+SfUY9oFwJJ3/5y1/0+uuva8yYMb3ep6GhQXFxcUpLS4t2OQAAYBCKOKC0tbWpsbExvHzy5Ek1NDQoNTVVEyZM0Ne//nUdOXJEL7/8sjo7O9XU1CRJSk1NVWJiourr63Xw4EHl5+crOTlZ9fX1Ki0t1Te/+U2NHj06eo8MAAAMWhEHlEOHDik/Pz+8XFZWJkkqKSlRRUWF/vu//1uSdNttt3W53+uvv668vDz5/X5t375dFRUVCgQCys7OVmlpaXg/AAAAEQeUvLw8ub2vtrf33N5xxx06cOBApIcFAADXEb6LBwAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYE/MvCwSA/phWsdvkJ3ACGBhcQQEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmDPM6wIsmvTUK67b/fGO1udI0yp2K9DpG6Cq3L2z7itelwAAQNRwBQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmBPxX/HU1dXpRz/6kQ4fPqyzZ8+qpqZGixYtCm93HEerV6/Wz3/+czU3N+vOO+/Uc889p89+9rPhMRcvXtTKlSv10ksvKS4uTkVFRfqXf/kXjRgxIioPCgDQu97+YtEi/mLx+hHxFZT29nZNnz5dVVVVPW5fv369fvKTn2jz5s06ePCgbrzxRs2bN08fffRReMyDDz6ot99+W7W1tXr55ZdVV1enZcuW9f9RAACAISXiKyiFhYUqLCzscZvjONq4caOefvpp3XfffZKkf//3f9f48eO1Y8cOLV68WH/605+0a9cuvfXWW5o5c6YkadOmTVqwYIGeffZZZWRkXMPDAQAAQ0FUP6jt5MmTampq0pw5c8LrRo4cqdzcXNXX12vx4sWqr6/XqFGjwuFEkubMmaO4uDgdPHhQX/3qV7vtNxAIKBAIhJdbW1slScFgUMFgMJoPQdLHH8Tmuj3O6fKvBbHoQ39dqaW3mnrrs0XR6HNf+3O9utIXS+eXJRaffwZSb+eNxfPL0nNdJPMnFj2MZJ9RDShNTU2SpPHjx3dZP378+PC2pqYmpaWldS1i2DClpqaGx3zaM888o8rKym7rX331VSUlJUWj9C7W5/Rt3NqZoagfu79+97vfeV1CN7W1ta7b+9pnS6LZ5976c72zdH5ZdL32p6/noKXzy+JzXV/mTyx+r3R0dPR57KD4qPvy8nKVlZWFl1tbW5WZmam5c+cqJSUl6sebVrHbdbs/ztHamSGtOhSnQMjGR90fq5jndQlhwWBQtbW1KigoUEJCwlXH9dZni6LR577253p1pT+Wzi9LLD7/DKTezkGL55el57pI5k8sfq9ceQWkL6IaUNLT0yVJ586d04QJE8Lrz507p9tuuy085vz5813ud/nyZV28eDF8/0/z+/3y+/3d1ickJMRkAvb1+3UCIZ+Z7+KxciJ+Um8/Hyu9i0Q0+xyr+TtUWDq/LLpe+9PXc8bS+WXx59SX+ROL/kWyz6h+Dkp2drbS09O1Z8+e8LrW1lYdPHhQs2bNkiTNmjVLzc3NOnz4cHjM3r17FQqFlJubG81yAADAIBXxFZS2tjY1NjaGl0+ePKmGhgalpqYqKytLTzzxhH7wgx/os5/9rLKzs7Vq1SplZGSEPyvllltu0fz587V06VJt3rxZwWBQK1as0OLFi/kLHgAAIKkfAeXQoUPKz88PL195b0hJSYm2bt2q7373u2pvb9eyZcvU3Nysu+66S7t27dLw4cPD99m2bZtWrFih2bNnhz+o7Sc/+UkUHg4AABgKIg4oeXl5cpyr/3mSz+fTmjVrtGbNmquOSU1NVXV1daSHBgAA1wm+iwcAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5EX8XD4DBZdJTr3hdQkT88Y7W53hdBQCvcQUFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5UQ8okyZNks/n63Zbvny5JCkvL6/btsceeyzaZQAAgEFsWLR3+NZbb6mzszO8fOzYMRUUFOj+++8Pr1u6dKnWrFkTXk5KSop2GQAAYBCLekAZN25cl+V169ZpypQp+ru/+7vwuqSkJKWnp0f70AAAYIiI6XtQLl26pF//+td6+OGH5fP5wuu3bdumsWPHatq0aSovL1dHR0csywAAAINM1K+gfNKOHTvU3Nyshx56KLyuuLhYEydOVEZGho4ePaonn3xSx48f14svvnjV/QQCAQUCgfBya2urJCkYDCoYDEa9bn+84749zunyrwWx6EN/Xamlt5p667NF0ehzX/sTLYOtzxbPL0uu9/70dt4M9PnVF5bOwUjmTyx6GMk+fY7jxKxz8+bNU2Jiol566aWrjtm7d69mz56txsZGTZkypccxFRUVqqys7La+urqa968AADBIdHR0qLi4WC0tLUpJSXEdG7OA8te//lWTJ0/Wiy++qPvuu++q49rb2zVixAjt2rVL8+bN63FMT1dQMjMzdeHChV4fYH9Mq9jtut0f52jtzJBWHYpTIORzHTtQjlX03DsvBINB1dbWqqCgQAkJCVcd11ufLYpGn/van2gZbH22eH5Zcr33p7dzcKDPr76wdA5GMn9i8XultbVVY8eO7VNAidlLPFu2bFFaWpq+8pWvuI5raGiQJE2YMOGqY/x+v/x+f7f1CQkJMZmAgc6+nfSBkK/PY2PNyon4Sb39fKz0LhLR7HOs5u+nDcY+S7bOL4uu1/709ZwZqPOrLyz+nPoyf2LRv0j2GZOAEgqFtGXLFpWUlGjYsP9/iBMnTqi6uloLFizQmDFjdPToUZWWluruu+/WrbfeGotSAADAIBSTgPLaa6/p1KlTevjhh7usT0xM1GuvvaaNGzeqvb1dmZmZKioq0tNPPx2LMgAAwCAVk4Ayd+5c9fTWlszMTO3fvz8WhwQAAEMI38UDAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAc2L2bcYYWJOeesXrEsL88Y7W53z8FeMWv8UTAGAfV1AAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDlRDygVFRXy+XxdblOnTg1v/+ijj7R8+XKNGTNGI0aMUFFRkc6dOxftMgAAwCAWkysof/M3f6OzZ8+Gb2+88UZ4W2lpqV566SX99re/1f79+3XmzBl97Wtfi0UZAABgkBoWk50OG6b09PRu61taWvTLX/5S1dXVuueeeyRJW7Zs0S233KIDBw7oS1/6UizKAQAAg0xMrqD85S9/UUZGhiZPnqwHH3xQp06dkiQdPnxYwWBQc+bMCY+dOnWqsrKyVF9fH4tSAADAIBT1Kyi5ubnaunWrbr75Zp09e1aVlZX627/9Wx07dkxNTU1KTEzUqFGjutxn/Pjxampquuo+A4GAAoFAeLm1tVWSFAwGFQwGo/0Q5I933LfHOV3+RVdDuT/RmG9X9hGLuduT3uazNUN5/kTD9d6f3s6bgT6/+sLSORjJ/IlFDyPZp89xnJh2rrm5WRMnTtSGDRt0ww03aMmSJV3ChiTl5OQoPz9fP/zhD3vcR0VFhSorK7utr66uVlJSUkzqBgAA0dXR0aHi4mK1tLQoJSXFdWxM3oPySaNGjdLnPvc5NTY2qqCgQJcuXVJzc3OXqyjnzp3r8T0rV5SXl6usrCy83NraqszMTM2dO7fXB9gf0yp2u273xzlaOzOkVYfiFAj5on78wW4o9+dYxbxr3kcwGFRtba0KCgqUkJAQharc9TafrRnK8ycarvf+9HYODvT51ReWzsFI5k80nu8+7corIH0R84DS1tamEydO6Fvf+pZmzJihhIQE7dmzR0VFRZKk48eP69SpU5o1a9ZV9+H3++X3+7utT0hIiMkEDHT27aQPhHx9Hns9Gor9ieZ8i9X8/bTB+jMYivMnmq7X/vT1nBmo86svLP6c+jJ/YtG/SPYZ9YDyD//wD1q4cKEmTpyoM2fOaPXq1YqPj9cDDzygkSNH6pFHHlFZWZlSU1OVkpKilStXatasWfwFDwAACIt6QDl9+rQeeOABffDBBxo3bpzuuusuHThwQOPGjZMk/fjHP1ZcXJyKiooUCAQ0b948/du//Vu0ywAAAINY1APK9u3bXbcPHz5cVVVVqqqqivahAQDAEMF38QAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwZ5nUBwGAy6alXrnkf/nhH63OkaRW7Fej0RaEqABh6uIICAADMIaAAAABzCCgAAMAcAgoAADCHgAIAAMwhoAAAAHMIKAAAwBwCCgAAMIeAAgAAzCGgAAAAcwgoAADAHAIKAAAwh4ACAADMIaAAAABzCCgAAMCcqAeUZ555Rl/84heVnJystLQ0LVq0SMePH+8yJi8vTz6fr8vtsccei3YpAABgkIp6QNm/f7+WL1+uAwcOqLa2VsFgUHPnzlV7e3uXcUuXLtXZs2fDt/Xr10e7FAAAMEgNi/YOd+3a1WV569atSktL0+HDh3X33XeH1yclJSk9PT3ahwcAAENA1APKp7W0tEiSUlNTu6zftm2bfv3rXys9PV0LFy7UqlWrlJSU1OM+AoGAAoFAeLm1tVWSFAwGFQwGo16zP95x3x7ndPkXXdEfd/THHf1xd733p7fn/CvbY/G7ob96+50ykCKZP7HoYST79DmOE7POhUIh3XvvvWpubtYbb7wRXv+zn/1MEydOVEZGho4ePaonn3xSOTk5evHFF3vcT0VFhSorK7utr66uvmqoAQAAtnR0dKi4uFgtLS1KSUlxHRvTgPL444/r97//vd544w3ddNNNVx23d+9ezZ49W42NjZoyZUq37T1dQcnMzNSFCxd6fYD9Ma1it+t2f5yjtTNDWnUoToGQL+rHH+zojzv6447+uLve+3OsYp7r9mAwqNraWhUUFCghIWGAqnLX2++UgRTJ/Omt1/3R2tqqsWPH9imgxOwlnhUrVujll19WXV2daziRpNzcXEm6akDx+/3y+/3d1ickJMRkAgY6+3bSB0K+Po+9HtEfd/THHf1xd732p6/P+bH6/dAfFn9OfZk/sehfJPuMekBxHEcrV65UTU2N9u3bp+zs7F7v09DQIEmaMGFCtMsBAACDUNQDyvLly1VdXa2dO3cqOTlZTU1NkqSRI0fqhhtu0IkTJ1RdXa0FCxZozJgxOnr0qEpLS3X33Xfr1ltvjXY5AABgEIp6QHnuueckffxhbJ+0ZcsWPfTQQ0pMTNRrr72mjRs3qr29XZmZmSoqKtLTTz8d7VIAAMAgFZOXeNxkZmZq//790T4sAAAYQvguHgAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYE/NvMwYAIFomPfWK63Z/vKP1OR9//43Fj5hH33EFBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5BBQAAGAOAQUAAJjjaUCpqqrSpEmTNHz4cOXm5uqPf/yjl+UAAAAjPAsoL7zwgsrKyrR69WodOXJE06dP17x583T+/HmvSgIAAEZ4FlA2bNigpUuXasmSJfr85z+vzZs3KykpSc8//7xXJQEAACOGeXHQS5cu6fDhwyovLw+vi4uL05w5c1RfX99tfCAQUCAQCC+3tLRIki5evKhgMBj1+oZdbnffHnLU0RHSsGCcOkO+qB9/sKM/7uiPO/rjjv64oz/uIunPBx98EPXjf/jhh5Ikx3F6H+x44L333nMkOW+++WaX9d/5znecnJycbuNXr17tSOLGjRs3bty4DYHbu+++22tW8OQKSqTKy8tVVlYWXg6FQrp48aLGjBkjn2/gE3Jra6syMzP17rvvKiUlZcCPbx39cUd/3NEfd/THHf1x53V/HMfRhx9+qIyMjF7HehJQxo4dq/j4eJ07d67L+nPnzik9Pb3beL/fL7/f32XdqFGjYllin6SkpHACuKA/7uiPO/rjjv64oz/uvOzPyJEj+zTOkzfJJiYmasaMGdqzZ094XSgU0p49ezRr1iwvSgIAAIZ49hJPWVmZSkpKNHPmTOXk5Gjjxo1qb2/XkiVLvCoJAAAY4VlA+cY3vqH3339f3//+99XU1KTbbrtNu3bt0vjx470qqc/8fr9Wr17d7WUnfIz+uKM/7uiPO/rjjv64G0z98TlOX/7WBwAAYODwXTwAAMAcAgoAADCHgAIAAMwhoAAAAHMIKNfo3nvvVVZWloYPH64JEyboW9/6ls6cOeN1WSa88847euSRR5Sdna0bbrhBU6ZM0erVq3Xp0iWvSzPjH//xH/XlL39ZSUlJJj580IKqqipNmjRJw4cPV25urv74xz96XZIJdXV1WrhwoTIyMuTz+bRjxw6vSzLlmWee0Re/+EUlJycrLS1NixYt0vHjx70uy4znnntOt956a/gD2mbNmqXf//73XpflioByjfLz8/Wb3/xGx48f13/913/pxIkT+vrXv+51WSb8+c9/VigU0k9/+lO9/fbb+vGPf6zNmzfre9/7ntelmXHp0iXdf//9evzxx70uxYQXXnhBZWVlWr16tY4cOaLp06dr3rx5On/+vNelea69vV3Tp09XVVWV16WYtH//fi1fvlwHDhxQbW2tgsGg5s6dq/Z29y9/vV7cdNNNWrdunQ4fPqxDhw7pnnvu0X333ae3337b69KuLjpf/4crdu7c6fh8PufSpUtel2LS+vXrnezsbK/LMGfLli3OyJEjvS7Dczk5Oc7y5cvDy52dnU5GRobzzDPPeFiVPZKcmpoar8sw7fz5844kZ//+/V6XYtbo0aOdX/ziF16XcVVcQYmiixcvatu2bfryl7+shIQEr8sxqaWlRampqV6XAYMuXbqkw4cPa86cOeF1cXFxmjNnjurr6z2sDINRS0uLJPF804POzk5t375d7e3tpr9ehoASBU8++aRuvPFGjRkzRqdOndLOnTu9LsmkxsZGbdq0SY8++qjXpcCgCxcuqLOzs9unSY8fP15NTU0eVYXBKBQK6YknntCdd96padOmeV2OGf/7v/+rESNGyO/367HHHlNNTY0+//nPe13WVRFQevDUU0/J5/O53v785z+Hx3/nO9/R//zP/+jVV19VfHy8vv3tb8sZwh/QG2l/JOm9997T/Pnzdf/992vp0qUeVT4w+tMfANGzfPlyHTt2TNu3b/e6FFNuvvlmNTQ06ODBg3r88cdVUlKi//u///O6rKvio+578P777+uDDz5wHTN58mQlJiZ2W3/69GllZmbqzTffNH3p7FpE2p8zZ84oLy9PX/rSl7R161bFxQ3tXNyf+bN161Y98cQTam5ujnF1dl26dElJSUn6z//8Ty1atCi8vqSkRM3NzVyZ/ASfz6eampoufcLHVqxYoZ07d6qurk7Z2dlel2PanDlzNGXKFP30pz/1upQeefZlgZaNGzdO48aN69d9Q6GQJCkQCESzJFMi6c97772n/Px8zZgxQ1u2bBny4US6tvlzPUtMTNSMGTO0Z8+e8C/eUCikPXv2aMWKFd4WB/Mcx9HKlStVU1Ojffv2EU76IBQKmf5dRUC5BgcPHtRbb72lu+66S6NHj9aJEye0atUqTZkyZchePYnEe++9p7y8PE2cOFHPPvus3n///fC29PR0Dyuz49SpU7p48aJOnTqlzs5ONTQ0SJI+85nPaMSIEd4W54GysjKVlJRo5syZysnJ0caNG9Xe3q4lS5Z4XZrn2tra1NjYGF4+efKkGhoalJqaqqysLA8rs2H58uWqrq7Wzp07lZycHH7f0siRI3XDDTd4XJ33ysvLVVhYqKysLH344Yeqrq7Wvn37tHv3bq9Luzpv/4hocDt69KiTn5/vpKamOn6/35k0aZLz2GOPOadPn/a6NBO2bNniSOrxho+VlJT02J/XX3/d69I8s2nTJicrK8tJTEx0cnJynAMHDnhdkgmvv/56j3OlpKTE69JMuNpzzZYtW7wuzYSHH37YmThxopOYmOiMGzfOmT17tvPqq696XZYr3oMCAADMGfpvCAAAAIMOAQUAAJhDQAEAAOYQUAAAgDkEFAAAYA4BBQAAmENAAQAA5hBQAACAOQQUAABgDgEFAACYQ0ABAADmEFAAAIA5/w9Ja08Jce4T1gAAAABJRU5ErkJggg=="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"spm.angle.hist()"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 63,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "<Axes: >"
|
||
},
|
||
"execution_count": 63,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh1ElEQVR4nO3df1SUZf7/8dcM4iDqgIiAGCr9VNdSj4bhuh1NFM1Ta3H2rOUp7bBaHa0tXCvaUrBWXWu1E4eyzpa1W2anzik3NZEscyu0JN0WK0+6mj/BTVbwx3EYnOvzR1/m24imwMBczDwf58xp55577rneNzo+d5gBhzHGCAAAwCLOUC8AAADgbAQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOt0CPUCmsPn8+nQoUPq2rWrHA5HqJcDAAAugjFGx48fV2pqqpzOn3+NpF0GyqFDh5SWlhbqZQAAgGbYv3+/Lrnkkp/dp10GSteuXSX9OKDb7W7WMbxer9avX69x48YpOjo6mMtrF5g/sueXOAfMH9nzS5yDUMxfW1urtLQ0/7/jP6ddBkrDt3XcbneLAiU2NlZutzti/2Ayf+TOL3EOmD+y55c4B6Gc/2LensGbZAEAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYJ0OoV4AAISDvo+sCfUSmsQVZbQ4I9SrAM6PV1AAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnQ6hXgAAIHQGFpTIc8YR6mVctL2LJoZ6CWgjvIICAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDpNCpSFCxfq2muvVdeuXZWUlKRJkyZp586dAfucPn1aM2fOVPfu3dWlSxfl5OSoqqoqYJ99+/Zp4sSJio2NVVJSkubMmaP6+vqWTwMAAMJCh6bs/PHHH2vmzJm69tprVV9fr0cffVTjxo3T119/rc6dO0uSHnzwQa1Zs0ZvvfWW4uLiNGvWLN1666369NNPJUlnzpzRxIkTlZKSos8++0yHDx/WnXfeqejoaC1YsCD4EwIAwkbfR9YE7ViuKKPFGdLAghJ5zjiCdtyz7V00sdWOHc6aFCjr1q0LuP7KK68oKSlJ5eXluv7661VTU6OXXnpJK1as0A033CBJWr58ufr376/Nmzfruuuu0/r16/X111/rgw8+UHJysgYPHqwnnnhCDz/8sAoKCtSxY8fgTQcAANqlFr0HpaamRpKUkJAgSSovL5fX61VWVpZ/n379+ql3794qKyuTJJWVlenqq69WcnKyf5/s7GzV1tZqx44dLVkOAAAIE016BeWnfD6fHnjgAf3yl7/UwIEDJUmVlZXq2LGj4uPjA/ZNTk5WZWWlf5+fxknD7Q23nYvH45HH4/Ffr62tlSR5vV55vd5mrb/hfs29f3vH/JE9v8Q5CPb8rigTlOO0FZfTBPw3ErXVObD171gongOa8ljNDpSZM2eqoqJCn3zySXMPcdEWLlyowsLCRtvXr1+v2NjYFh27tLS0Rfdv75g/sueXOAfBmn9xRlAO0+aeGOYL9RJCrrXPwdq1a1v1+C3Vls8Bp06duuh9mxUos2bN0urVq7Vp0yZdcskl/u0pKSmqq6vTsWPHAl5FqaqqUkpKin+fzz//POB4DZ/yadjnbPn5+crLy/Nfr62tVVpamsaNGye3292cEeT1elVaWqqxY8cqOjq6Wcdoz5g/sueXOAfBnn9gQUkQVtV2XE6jJ4b59PhWpzy+1nuDqM3a6hxUFGS32rFbIhTPAQ3fAbkYTQoUY4zuu+8+vfPOO9q4caPS09MDbh86dKiio6O1YcMG5eTkSJJ27typffv2KTMzU5KUmZmpP/3pTzpy5IiSkpIk/VhvbrdbAwYMOOfjulwuuVyuRtujo6NbfFKDcYz2jPkje36JcxCs+VvzUyCtyeNztNu1B0trnwPb/3615XNAUx6nSYEyc+ZMrVixQqtWrVLXrl397xmJi4tTp06dFBcXp9zcXOXl5SkhIUFut1v33XefMjMzdd1110mSxo0bpwEDBuiOO+7Q4sWLVVlZqccee0wzZ848Z4QAAIDI06RAef755yVJo0aNCti+fPlyTZs2TZK0dOlSOZ1O5eTkyOPxKDs7W88995x/36ioKK1evVr33nuvMjMz1blzZ02dOlXz589v2SQAACBsNPlbPBcSExOj4uJiFRcXn3efPn36WP+mIQAAEDr8Lh4AAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWKfJgbJp0ybddNNNSk1NlcPh0Lvvvhtw+7Rp0+RwOAIu48ePD9inurpaU6ZMkdvtVnx8vHJzc3XixIkWDQIAAMJHkwPl5MmTGjRokIqLi8+7z/jx43X48GH/5Y033gi4fcqUKdqxY4dKS0u1evVqbdq0STNmzGj66gEAQFjq0NQ7TJgwQRMmTPjZfVwul1JSUs552zfffKN169bpiy++0LBhwyRJRUVFuvHGG/X0008rNTW1qUsCAABhpsmBcjE2btyopKQkdevWTTfccIOefPJJde/eXZJUVlam+Ph4f5xIUlZWlpxOp7Zs2aJbbrml0fE8Ho88Ho//em1trSTJ6/XK6/U2a40N92vu/ds75o/s+SXOQbDnd0WZoBynrbicJuC/kaitzoGtf8dC8RzQlMdyGGOa/ZVxOBx65513NGnSJP+2lStXKjY2Vunp6dq9e7ceffRRdenSRWVlZYqKitKCBQv06quvaufOnQHHSkpKUmFhoe69995Gj1NQUKDCwsJG21esWKHY2NjmLh8AALShU6dO6fbbb1dNTY3cbvfP7hv0V1AmT57s/99XX321rrnmGl122WXauHGjxowZ06xj5ufnKy8vz3+9trZWaWlpGjdu3AUHPB+v16vS0lKNHTtW0dHRzTpGe8b8kT2/xDkI9vwDC0qCsKq243IaPTHMp8e3OuXxOUK9nJBoq3NQUZDdasduiVA8BzR8B+RitMq3eH7q0ksvVWJionbt2qUxY8YoJSVFR44cCdinvr5e1dXV533fisvlksvlarQ9Ojq6xSc1GMdoz5g/sueXOAfBmt9zpn3+I+/xOdrt2oOltc+B7X+/2vI5oCmP0+o/B+XAgQM6evSoevbsKUnKzMzUsWPHVF5e7t/nww8/lM/n0/Dhw1t7OQAAoB1o8isoJ06c0K5du/zX9+zZo+3btyshIUEJCQkqLCxUTk6OUlJStHv3bj300EO6/PLLlZ3940tc/fv31/jx4zV9+nQtW7ZMXq9Xs2bN0uTJk/kEDwAAkNSMV1C2bt2qIUOGaMiQIZKkvLw8DRkyRHPnzlVUVJS++uor3XzzzbryyiuVm5uroUOH6p///GfAt2hef/119evXT2PGjNGNN96okSNH6sUXXwzeVAAAoF1r8isoo0aN0s998Kek5MJvFEtISNCKFSua+tAAACBC8Lt4AACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdZr824wBoLX1fWRNqz+GK8pocYY0sKBEnjOOVn88AE3DKygAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrdAj1AgAACGd9H1kT6iWckyvKaHGGNLCgRJ4zjka37100MQSr+v94BQUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANZpcqBs2rRJN910k1JTU+VwOPTuu+8G3G6M0dy5c9WzZ0916tRJWVlZ+u677wL2qa6u1pQpU+R2uxUfH6/c3FydOHGiRYMAAIDw0eRAOXnypAYNGqTi4uJz3r548WI9++yzWrZsmbZs2aLOnTsrOztbp0+f9u8zZcoU7dixQ6WlpVq9erU2bdqkGTNmNH8KAAAQVjo09Q4TJkzQhAkTznmbMUbPPPOMHnvsMf3617+WJP3tb39TcnKy3n33XU2ePFnffPON1q1bpy+++ELDhg2TJBUVFenGG2/U008/rdTU1BaMAwAAwkGTA+Xn7NmzR5WVlcrKyvJvi4uL0/Dhw1VWVqbJkyerrKxM8fHx/jiRpKysLDmdTm3ZskW33HJLo+N6PB55PB7/9draWkmS1+uV1+tt1lob7tfc+7d3zB/Z80t2nwNXlGn9x3CagP9GmkifX+IcXGj+1nhuaMoxgxoolZWVkqTk5OSA7cnJyf7bKisrlZSUFLiIDh2UkJDg3+dsCxcuVGFhYaPt69evV2xsbIvWXFpa2qL7t3fMH9nzS3aeg8UZbfdYTwzztd2DWSjS55c4B+ebf+3atUF/rFOnTl30vkENlNaSn5+vvLw8//Xa2lqlpaVp3LhxcrvdzTqm1+tVaWmpxo4dq+jo6GAttd1g/sieX7L7HAwsKGn1x3A5jZ4Y5tPjW53y+Byt/ni2ifT5Jc7BheavKMgO+mM2fAfkYgQ1UFJSUiRJVVVV6tmzp397VVWVBg8e7N/nyJEjAferr69XdXW1//5nc7lccrlcjbZHR0e3+Ik1GMdoz5g/sueX7DwHnjNt94+Fx+do08ezTaTPL3EOzjd/azwvNOWYQf05KOnp6UpJSdGGDRv822pra7VlyxZlZmZKkjIzM3Xs2DGVl5f79/nwww/l8/k0fPjwYC4HAAC0U01+BeXEiRPatWuX//qePXu0fft2JSQkqHfv3nrggQf05JNP6oorrlB6eroef/xxpaamatKkSZKk/v37a/z48Zo+fbqWLVsmr9erWbNmafLkyXyCBwAASGpGoGzdulWjR4/2X294b8jUqVP1yiuv6KGHHtLJkyc1Y8YMHTt2TCNHjtS6desUExPjv8/rr7+uWbNmacyYMXI6ncrJydGzzz4bhHEAAEA4aHKgjBo1Ssac/yNZDodD8+fP1/z588+7T0JCglasWNHUhwYAABGC38UDAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKwT9EApKCiQw+EIuPTr189/++nTpzVz5kx1795dXbp0UU5OjqqqqoK9DAAA0I61yisov/jFL3T48GH/5ZNPPvHf9uCDD+q9997TW2+9pY8//liHDh3Srbfe2hrLAAAA7VSHVjlohw5KSUlptL2mpkYvvfSSVqxYoRtuuEGStHz5cvXv31+bN2/Wdddd1xrLAQAA7UyrBMp3332n1NRUxcTEKDMzUwsXLlTv3r1VXl4ur9errKws/779+vVT7969VVZWdt5A8Xg88ng8/uu1tbWSJK/XK6/X26w1Ntyvufdv75g/sueX7D4HrijT+o/hNAH/jTSRPr/EObjQ/K3x3NCUYzqMMUH9yrz//vs6ceKErrrqKh0+fFiFhYU6ePCgKioq9N577+muu+4KiA1JysjI0OjRo/XnP//5nMcsKChQYWFho+0rVqxQbGxsMJcPAABayalTp3T77berpqZGbrf7Z/cNeqCc7dixY+rTp4+WLFmiTp06NStQzvUKSlpamn744YcLDng+Xq9XpaWlGjt2rKKjo5t1jPaM+SN7fsnuczCwoKTVH8PlNHpimE+Pb3XK43O0+uPZJtLnlzgHF5q/oiA76I9ZW1urxMTEiwqUVvkWz0/Fx8fryiuv1K5duzR27FjV1dXp2LFjio+P9+9TVVV1zvesNHC5XHK5XI22R0dHt/iJNRjHaM+YP7Lnl+w8B54zbfePhcfnaNPHs02kzy9xDs43f2s8LzTlmK3+c1BOnDih3bt3q2fPnho6dKiio6O1YcMG/+07d+7Uvn37lJmZ2dpLAQAA7UTQX0H5wx/+oJtuukl9+vTRoUOHNG/ePEVFRem2225TXFyccnNzlZeXp4SEBLndbt13333KzMzkEzwAAMAv6IFy4MAB3XbbbTp69Kh69OihkSNHavPmzerRo4ckaenSpXI6ncrJyZHH41F2draee+65YC8DwP/T95E159zuijJanPHj+z0i+eVtAHYKeqCsXLnyZ2+PiYlRcXGxiouLg/3QAAAgTPC7eAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFgn6L+LBwhn5/vFewCA4OIVFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnQ6hfPDi4mI99dRTqqys1KBBg1RUVKSMjIxQLkmS1PeRNaFeQqtzRRktzpAGFpTIc8YR6uW0uUifHwBsF7JXUN58803l5eVp3rx5+vLLLzVo0CBlZ2fryJEjoVoSAACwRMgCZcmSJZo+fbruuusuDRgwQMuWLVNsbKxefvnlUC0JAABYIiTf4qmrq1N5ebny8/P925xOp7KyslRWVtZof4/HI4/H479eU1MjSaqurpbX623WGrxer06dOqWjR48qOjo64LYO9Sebdcz2pIPP6NQpnzp4nTrji7xvcUT6/BLngPkje36Jc3Ch+Y8ePRr0xzx+/LgkyRhz4Z1NCBw8eNBIMp999lnA9jlz5piMjIxG+8+bN89I4sKFCxcuXLiEwWX//v0XbIWQvkn2YuXn5ysvL89/3efzqbq6Wt27d5fD0bzqra2tVVpamvbv3y+32x2spbYbzB/Z80ucA+aP7PklzkEo5jfG6Pjx40pNTb3gviEJlMTEREVFRamqqipge1VVlVJSUhrt73K55HK5ArbFx8cHZS1utzsi/2A2YP7Inl/iHDB/ZM8vcQ7aev64uLiL2i8kb5Lt2LGjhg4dqg0bNvi3+Xw+bdiwQZmZmaFYEgAAsEjIvsWTl5enqVOnatiwYcrIyNAzzzyjkydP6q677grVkgAAgCVCFii//e1v9d///ldz585VZWWlBg8erHXr1ik5OblNHt/lcmnevHmNvnUUKZg/sueXOAfMH9nzS5wD2+d3GHMxn/UBAABoO/wuHgAAYB0CBQAAWIdAAQAA1iFQAACAdSIuUDZu3CiHw3HOyxdffOHf76uvvtKvfvUrxcTEKC0tTYsXLw7hqoNvzZo1Gj58uDp16qRu3bpp0qRJAbfv27dPEydOVGxsrJKSkjRnzhzV19eHZrFB1rdv30Zf+0WLFgXsE+5f/wYej0eDBw+Ww+HQ9u3bA24L53Nw8803q3fv3oqJiVHPnj11xx136NChQwH7hOv8e/fuVW5urtLT09WpUydddtllmjdvnurq6gL2C9f5G/zpT3/SiBEjFBsbe94f/BnOz4OSVFxcrL59+yomJkbDhw/X559/HuolBQrOb9dpPzwejzl8+HDA5Xe/+51JT083Pp/PGGNMTU2NSU5ONlOmTDEVFRXmjTfeMJ06dTIvvPBCiFcfHG+//bbp1q2bef75583OnTvNjh07zJtvvum/vb6+3gwcONBkZWWZbdu2mbVr15rExESTn58fwlUHT58+fcz8+fMD/gycOHHCf3u4f/1/6v777zcTJkwwksy2bdv828P9HCxZssSUlZWZvXv3mk8//dRkZmaazMxM/+3hPP/7779vpk2bZkpKSszu3bvNqlWrTFJSkpk9e7Z/n3Cev8HcuXPNkiVLTF5enomLi2t0e7g/D65cudJ07NjRvPzyy2bHjh1m+vTpJj4+3lRVVYV6aX4RFyhnq6urMz169DDz58/3b3vuuedMt27djMfj8W97+OGHzVVXXRWKJQaV1+s1vXr1Mn/961/Pu8/atWuN0+k0lZWV/m3PP/+8cbvdAeekverTp49ZunTpeW8P56//T61du9b069fP7Nixo1GgRMo5aLBq1SrjcDhMXV2dMSby5l+8eLFJT0/3X4+k+ZcvX37OQAn358GMjAwzc+ZM//UzZ86Y1NRUs3DhwhCuKlDEfYvnbP/4xz909OjRgJ9gW1ZWpuuvv14dO3b0b8vOztbOnTv1v//9LxTLDJovv/xSBw8elNPp1JAhQ9SzZ09NmDBBFRUV/n3Kysp09dVXB/zQvOzsbNXW1mrHjh2hWHbQLVq0SN27d9eQIUP01FNPBbxsG85f/wZVVVWaPn26/v73vys2NrbR7ZFwDhpUV1fr9ddf14gRIxQdHS0psuaXpJqaGiUkJPivR9r85xLOz4N1dXUqLy9XVlaWf5vT6VRWVpbKyspCuLJAER8oL730krKzs3XJJZf4t1VWVjb6ibYN1ysrK9t0fcH2n//8R5JUUFCgxx57TKtXr1a3bt00atQoVVdXSwrv+SXp/vvv18qVK/XRRx/p7rvv1oIFC/TQQw/5bw/3+Y0xmjZtmu655x4NGzbsnPuE+zmQpIcfflidO3dW9+7dtW/fPq1atcp/WyTM32DXrl0qKirS3Xff7d8WSfOfTzifgx9++EFnzpw553w2zRY2gfLII4+c982vDZdvv/024D4HDhxQSUmJcnNzQ7Tq4LnY+X0+nyTpj3/8o3JycjR06FAtX75cDodDb731VoinaL6mfP3z8vI0atQoXXPNNbrnnnv0l7/8RUVFRfJ4PCGeomUu9hwUFRXp+PHjys/PD/WSg6qpzwFz5szRtm3btH79ekVFRenOO++Uacc/WLs5z4EHDx7U+PHj9Zvf/EbTp08P0cqDpznnAPYK2e/iCbbZs2dr2rRpP7vPpZdeGnB9+fLl6t69u26++eaA7SkpKaqqqgrY1nA9JSWl5YttBRc7/+HDhyVJAwYM8G93uVy69NJLtW/fPkk/znj2u7nDZf5zGT58uOrr67V3715dddVV7fLrL138Ofjwww9VVlbW6PdvDBs2TFOmTNGrr77aLs9BU/8MJCYmKjExUVdeeaX69++vtLQ0bd68WZmZmREx/6FDhzR69GiNGDFCL774YsB+7XF+qWXPA2drj8+DFysxMVFRUVHn/BpbNVuo3wQTKj6fz6Snpwe8c71BwxvEGt4wZ4wx+fn5YfEGsZqaGuNyuQLeJFtXV2eSkpL879BveHPYT9/N/cILLxi3221Onz7d5mtuba+99ppxOp2murraGBPeX39jjPn+++/Nv//9b/+lpKTESDJvv/222b9/vzEm/M/B2b7//nsjyXz00UfGmPCf/8CBA+aKK64wkydPNvX19Y1uD/f5f+pCb5IN1+fBjIwMM2vWLP/1M2fOmF69eln1JtmIDZQPPvjASDLffPNNo9uOHTtmkpOTzR133GEqKirMypUrTWxsbNh8xO73v/+96dWrlykpKTHffvutyc3NNUlJSf5/oBs+Xjdu3Dizfft2s27dOtOjR4+w+HjdZ599ZpYuXWq2b99udu/ebV577TXTo0cPc+edd/r3Cfev/9n27NnT6FM84XwONm/ebIqKisy2bdvM3r17zYYNG8yIESPMZZdd5v+HJ5znP3DggLn88svNmDFjzIEDBwI+bt8gnOdv8P3335tt27aZwsJC06VLF7Nt2zazbds2c/z4cWNMeD8PGvPjx4xdLpd55ZVXzNdff21mzJhh4uPjAz61FGoRGyi33XabGTFixHlv/9e//mVGjhxpXC6X6dWrl1m0aFEbrq511dXVmdmzZ5ukpCTTtWtXk5WVZSoqKgL22bt3r5kwYYLp1KmTSUxMNLNnzzZerzdEKw6e8vJyM3z4cBMXF2diYmJM//79zYIFCxr9P6Jw/vqf7VyBYkz4noOvvvrKjB492iQkJBiXy2X69u1r7rnnHnPgwIGA/cJ1/uXLlxtJ57z8VLjO32Dq1KnnPAcNr6IZE77Pgw2KiopM7969TceOHU1GRobZvHlzqJcUwGFMO35XGAAACEth8ykeAAAQPggUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1vk/aecqvbTXhboAAAAASUVORK5CYII="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"(spm.r - 78.31347265956222).hist()"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "(0 (9.149, 12.724]\n 1 (9.149, 12.724]\n 2 (12.724, 16.229]\n 3 (16.229, 19.733]\n 4 (19.733, 23.238]\n ... \n 995 (61.787, 65.292]\n 996 (65.292, 68.796]\n 997 (65.292, 68.796]\n 998 (40.76, 44.265]\n 999 (65.292, 68.796]\n Name: r, Length: 1000, dtype: category\n Categories (20, interval[float64, right]): [(9.149, 12.724] < (12.724, 16.229] < (16.229, 19.733] < (19.733, 23.238] ... (65.292, 68.796] < (68.796, 72.301] < (72.301, 75.805] < (75.805, 79.31]],\n array([ 9.14945448, 12.72404325, 16.22854204, 19.73304082, 23.23753961,\n 26.7420384 , 30.24653719, 33.75103598, 37.25553477, 40.76003356,\n 44.26453235, 47.76903114, 51.27352992, 54.77802871, 58.2825275 ,\n 61.78702629, 65.29152508, 68.79602387, 72.30052266, 75.80502145,\n 79.30952024]))"
|
||
},
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"ayx"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "<ufunc 'arctan2'>"
|
||
},
|
||
"execution_count": 37,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"np.arctan2()"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 62,
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/joshuacoles/Library/Caches/pypoetry/virtualenvs/data-analysis-B4Au_hWl-py3.10/lib/python3.10/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n",
|
||
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Axes: >"
|
||
},
|
||
"execution_count": 62,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAFElEQVR4nO3deXhTZd4+8Dtpm3RNuqcttKUFpOxIkVJBFKyWDuPAUB10+Ckqo6MWF+qCdV5gcBzLqK84KqAzg+C8iozMCO44UAFRy2IFZJHK3kKbsCbpQtIlz++PtkdjW2jaJCfL/bmuXCbPeXLyPRzIuT15znMUQggBIiIiIjdRyl0AERER+ReGDyIiInIrhg8iIiJyK4YPIiIiciuGDyIiInIrhg8iIiJyK4YPIiIiciuGDyIiInKrQLkL+DmbzYaqqipERERAoVDIXQ4RERF1gRACNTU1SEpKglJ56XMbHhc+qqqqkJycLHcZRERE1A2VlZXo3bv3Jft4XPiIiIgA0FK8RqORuRoiIiLqCrPZjOTkZOk4fikeFz7afmrRaDQMH0RERF6mK0MmOOCUiIiI3Irhg4iIiNzKofDR3NyMefPmIS0tDSEhIejbty/+9Kc/QQgh9RFCYP78+UhMTERISAhycnJw6NAhpxdORERE3smh8PGXv/wFy5Ytw6uvvorvv/8ef/nLX/Dcc8/hlVdekfo899xzePnll/Haa69h+/btCAsLQ25uLiwWi9OLJyIiIu+jED89bXEZv/zlL6HT6bB8+XKpLT8/HyEhIXjrrbcghEBSUhIeffRRPPbYYwAAk8kEnU6HlStX4tZbb73sZ5jNZmi1WphMJg44JSIi8hKOHL8dOvNx9dVXo6SkBD/88AMAYM+ePfjyyy+Rl5cHADh27Bj0ej1ycnKk92i1WmRlZaG0tLTDdVqtVpjNZrsHERER+S6HLrV98sknYTabkZGRgYCAADQ3N+PPf/4zZsyYAQDQ6/UAAJ1OZ/c+nU4nLfu54uJiLFy4sDu1ExERkRdy6MzHu+++i7fffhurVq3Ct99+izfffBMvvPAC3nzzzW4XUFRUBJPJJD0qKyu7vS4iIiLyfA6d+Xj88cfx5JNPSmM3hg4dihMnTqC4uBgzZ85EQkICAMBgMCAxMVF6n8FgwIgRIzpcp1qthlqt7mb5RERE5G0cOvNRX1/f7mYxAQEBsNlsAIC0tDQkJCSgpKREWm42m7F9+3ZkZ2c7oVwiIiLydg6d+bjpppvw5z//GSkpKRg8eDB27dqFF198EXfffTeAlilVH3nkETzzzDPo378/0tLSMG/ePCQlJWHq1KmuqJ+IiIi8jEPh45VXXsG8efPwwAMP4PTp00hKSsLvf/97zJ8/X+rzxBNPoK6uDvfeey+MRiPGjRuH9evXIzg42OnFExERkfdxaJ4Pd+A8H0RERM63p9KID/ZUwSYEYsPVKJjQz6nrd+T47XF3tSUiIiLnm//BfuypNAIA0uPCnB4+HMHwQURE5AfO1lgBALdk9saAhAhZa2H4ICIi8gO11iYAwO+vTUe/eIYPIiIicpEDVWYYzBYpfISrg2SuiOGDiIjIZ+07ZcIvX/nSri08WP5Dv/wVEBERkUscPVsHAAhXByI9Lgzj+sUiXC3/oV/+CoiIiMgl6lp/ahmTHoN/zBwlczU/cmh6dSIiIvIeNZZGAECEB/zU8lOeVQ0RERF1yb/LTmLLD2c6XX6xoRkbvzcAAMLUAe4qq0sYPoiIiLxMs02g6L3v0NjctUnKs9NjXVyRYxg+iIiIvEyttUkKHv8zeSAClIoO+wUoFZgwIB7J0aHuLO+yGD6IiIi8TNucHaoAJX53TbrM1TiOA06JiIi8yMWGZry7sxKAZ8zZ0R0MH0RERF7ktS1H8NeSQwAAbYj8s5V2B8MHERGRF6m8UC89fyJ3gIyVdB/DBxERkRdpmzjsT1OHIG9ooszVdI93/lhERETkZ+qsTaizNuFCfevEYR4wTXp3eW/lREREXmjdrlP4Z+lx2Lo2RQeAlkGm5YYau7Ywhg8iIiLqimWbj7QLEo4IUCqQFBmMkSmRzivKzRg+iIiI3Mjcer+Veb8chFQHJv8KClQiOz0GqkDvH67J8EFERORGtZaWAaMTM+KRFhsmczXy8P74RERE5CUqztWjpvVqFU+72Zs7MXwQERG5yZ8+PiA91wR75wRhzsDwQURE5Cbnaq0AgCkjkhAcxDMfRERE5GJtN4SbPipZ5krkxfBBRETkBkII/GCoBeC9N4RzFoYPIiIiN3j188PS83AvniDMGRg+iIiI3OCg/seJxfrE+Ocltm0YPoiIiNygbbzHC7cMh1KpkLkaeTF8EBERuUFb+Aj34/k92vj3j05EREQu9tF3VVjw/n5cqG8A4N03hHMW/gkQERG50Id7qnCuriV4hKoCMEAXIXNF8nPoZ5c+ffpAoVC0exQUFAAALBYLCgoKEBMTg/DwcOTn58NgMLikcCIiIm9QZ20GAPzP5IHY/tT1iNcEy1yR/BwKHzt37kR1dbX02LBhAwDglltuAQDMmTMHH374IdasWYMtW7agqqoK06ZNc37VREREXqLtXi6pMWGI8OMp1X/KoZ9d4uLi7F4vWrQIffv2xbXXXguTyYTly5dj1apVmDhxIgBgxYoVGDhwILZt24YxY8Y4r2oiIiIPZTBb8NLGH2BuvXvt0dOtE4txrIek238SDQ0NeOutt1BYWAiFQoGysjI0NjYiJydH6pORkYGUlBSUlpZ2Gj6sViusVqv02mw2d7ckIiIi2a35phLv7Khs156o5c8tbbodPtatWwej0Yg777wTAKDX66FSqRAZGWnXT6fTQa/Xd7qe4uJiLFy4sLtlEBEReZTzdY0AgGv6xyJnoA4AkBYbhj6x/j2x2E91O3wsX74ceXl5SEpK6lEBRUVFKCwslF6bzWYkJ/v3DXeIiMh71VpbwseY9BjMvLqPvMV4qG6FjxMnTmDjxo147733pLaEhAQ0NDTAaDTanf0wGAxISEjodF1qtRpqtbo7ZRAREbmczSZwptaKfadMOFfbcsnstqPncKbW2mH/76tbplGP8PObx11Kt/5kVqxYgfj4eEyePFlqy8zMRFBQEEpKSpCfnw8AKC8vR0VFBbKzs51TLRERkQt9feQsPtxTBSFaXgsB/Oub9uM3uiIlOtSJlfkWh8OHzWbDihUrMHPmTAQG/vh2rVaLWbNmobCwENHR0dBoNHjwwQeRnZ3NK12IiMgrzH9/Pw63Xp3yc+HqQPTXhSMqVAUAiAtXY0zf6A77xoSpMa5frMvq9HYOh4+NGzeioqICd999d7tlixcvhlKpRH5+PqxWK3Jzc7F06VKnFEpERORq51tnIr17bBpiwlVSe1ZaNEb16ThokOMUQrSdXPIMZrMZWq0WJpMJGo1G7nKIiMiPXPGHT9HQbMPXT05EUmSI3OV4FUeO3xwNQ0REfslY34Adx86jySZgEwLmi01oaLYB4M3fXI1/ukRE5JcKVn2Lrw6fa9euClByNlIX458uERH5vG8rLuDfZSdhs/040qDsxAUAwPDkSIQEKRGoVCI6TIXrBsQhQKmQq1S/wPBBREQ+75mPDuDbCmO7dnWgEqvvGYMQVYD7i/JjDB9EROSzTPWN2HH8PI6fqwcA3Hl1H8RF/Dix5ciUKAYPGTB8EBGRz3pw9S588cMZ6fUD1/VFvIY3eJMbwwcREfkUY30Dth46i2abwJ5KIwBgcJIG4/rHMnh4CIYPIiLyKX9Yuw8f7622a3v7d1mIDFV18g5yN4YPIiLyekIIaY6OckPLjd2G9dZCExyE7L4xDB4ehuGDiIi8jhACGw4YYKixot7ahOJPD7br88Itw3GFLkKG6uhyGD6IiMijWBqbYaxvtGv7x9aj0hkNANh3yoQLP+vzU+lxYUiN4V1lPRXDBxEReYwLdQ2Y8L+b24WPS5k0OAEBSgWmXtkLWektN38LUwVyojAPxvBBREQeo9xQIwWPwJ+EB4UC6BsXjt9fmy61BQcGYEJGPIKDOE+Ht2H4ICIij1FraQIADO+txfuzx8lcDbmKUu4CiIiI2tQ1tISP8GD+v7EvY/ggIiKPUdN65oN3lfVtDB9EROQx6qwt4SOM4cOnMXwQEZHHqG0NHxEMHz6N4YOIiDxGLc98+AXuXSIicoumZhvqrM2dLrc0NWPFV8cBcMCpr+PeJSIil7M0NuPGxV+g4nx9l/rrInj3WV/Gn12IiMjlDhlquxw8bhqehMnDEl1cEcmJZz6IiMhlPj9owB8/OIAaS8uspUN7abH2gas77a9QKDgtuh9g+CAiIlSer8cHe6rQ2Hpbemf5dK/e7oxHZmoUAgN40t3fMXwQERGe+fgAPttvcNn6X7hlOIb11qJfXLjLPoO8B8MHERFBb7IAACYMiEOvqBCnrrt3VCjyR/aCQsGfU6gFwwcREcHcOq35/df1w+i0aJmrIV/H8EFE5Kee+egAVu+shBACdQ0t829oQ4Jkror8AcMHEZEf+sv6g/jHl8fs2mLD1UiOdu5PLkQdYfggIvIzlsZmLNt8RHq96bHroFQA8RHBCFEFyFgZ+QuGDyIiP2NunXMDALY/dT10Gs4mSu7F8EFE5INM9Y04aex4RtFTFy4CADTBgQweJAuHw8epU6cwd+5cfPrpp6ivr0e/fv2wYsUKjBo1CgAghMCCBQvw97//HUajEWPHjsWyZcvQv39/pxdPRETtmS2NuOa5z6UrWDoTEczBpSQPh8LHhQsXMHbsWEyYMAGffvop4uLicOjQIURFRUl9nnvuObz88st48803kZaWhnnz5iE3NxcHDhxAcDATNhFRT63aXoGPvqvqdHmdtQlmSxMClQrEhKs67KOAArdnp7qqRKJLUgghRFc7P/nkk/jqq6+wdevWDpcLIZCUlIRHH30Ujz32GADAZDJBp9Nh5cqVuPXWWy/7GWazGVqtFiaTCRqNpqulERH5BSEEhiz4TLo09lJuGp6EV2670g1VETl2/HbozMcHH3yA3Nxc3HLLLdiyZQt69eqFBx54APfccw8A4NixY9Dr9cjJyZHeo9VqkZWVhdLS0g7Dh9VqhdVqtSueiIg69s/SE1LwePE3wzu9CVugUolx/WPdWRpRlzkUPo4ePYply5ahsLAQTz31FHbu3ImHHnoIKpUKM2fOhF6vBwDodDq79+l0OmnZzxUXF2PhwoXdLJ+IyH+YLY1Y8MF+AIBOo8a0kb1lroioexwKHzabDaNGjcKzzz4LALjyyiuxb98+vPbaa5g5c2a3CigqKkJhYaH02mw2Izk5uVvrIiLydnsqjfjy8NkOl52va5Ce/+32Ue4qicjpHAofiYmJGDRokF3bwIED8Z///AcAkJCQAAAwGAxITEyU+hgMBowYMaLDdarVaqjVakfKICLyWff88xucrrFess/QXloMT450T0FELuBQ+Bg7dizKy8vt2n744QekpraMmE5LS0NCQgJKSkqksGE2m7F9+3bcf//9zqmYiMhH2WxCCh5TRyRBHdh+tlGlErg5kz+3kHdzKHzMmTMHV199NZ599ln85je/wY4dO/C3v/0Nf/vb3wAACoUCjzzyCJ555hn0799futQ2KSkJU6dOdUX9REQ+o67hx3k5FuUPQ3AQpzon3+RQ+Ljqqquwdu1aFBUV4emnn0ZaWhpeeuklzJgxQ+rzxBNPoK6uDvfeey+MRiPGjRuH9evXc44PIqLLqLW2hI9ApQLqQKXM1RC5jkPzfLgD5/kgIn9RbbqID3ZXobHZBgBYU3YSJ87VIzI0CLvn3yhzdUSOcdk8H0RE5DzPrS/H2l2n2rX3jQuXoRoi92H4ICKSSZWx5QZv4/rFIjk6BAAQrg5EwYR+cpZF5HIMH0REMjFdbLm1/b3j0zH+ijiZqyFyH4YPIiI3OnKmFncs34HzdQ242NgyTbo2hHeXJf/C8EFE5EZbfziDU60/twBAVGgQ0uLCZKyIyP0YPoiI3Mhsabmc9lfDk/B47gDEhqsRouJ8HuRfGD6IiNzA2tSMdbtO4avW+7YkRgYjOTpU5qqI5MHwQUTkBu/vqsLc/+yVXseG8Z5W5L8YPoiIeuCDPVVY8dUx2C4zXaPe1DLOIyMhAlf3jUU+789Cfozhg4ioB5ZuOoyD+pou9y+Y0A83DU9yYUVEno/hg4ioB4z1LXN1zP/lIKTGXHoMhzYkCCNTotxRFpFHY/ggInJQfUMTPthdhVprE87XNwAAcgbqkHKZ8EFELRg+iIgc9M/SE1j06UHptUIBRIVxojCirmL4ICJywLcVF6TgMaSXBv3iwjE6LQYRwQwfRF3F8EFE1AXbjp7DyyWH8PWRc1Lb/df2w+RhiTJWReSdGD6IyOcY6xvspjAHgK2HzmLjAQOaxWWuie3Ergqj3evHbrwCNwzSdbdEIr/G8EFEPuPTvdVYvbMSW34447LPeDIvA5OHJnJ2UqIeYPggIp/x9EcHUG2ySK/jI+xnEQ0KUOKJSQMQqureV19ydAgyEjQ9qpGIGD6IyIdcaL3s9YlJA/DrK3shURsic0VE1BGGDyLyCU3NNlgabQCA265KQVSYSuaKiKgzDB9E5NUqztXji0NnYGlsltrC1PxqI/Jk/BdKRF7noXd2Yf1+PQCgoclmtyxUFQBVoFKOsoioixg+iMirNDXb8MGeqnbtNwzSIVCp4OWvRF6A4YOIvEqd9cefV7Y8fh0CA5SIC1fzbAeRF2H4ICKvUmNtuYusKlCJ1Jgwmashou5g+CAij2OzCRR/+j2Ona1rt6ztzEcEB5USeS3+6yUij7OvyoS/bz12yT69oziHB5G3YvggIo9zob7lp5VekSF46Pp+7ZYroMDY/rHuLouInIThg4g8jvliS/joHRWC6VelyFwNETkbwwcRudUPhho89M4umFoDRkfqG1rHdQQHuassInIjhg8icqsNBww4qK/pUt/BSbyJG5EvYvggIreqsTQBAKaMSMLvxqV32k8dpET/+HB3lUVEbuTQrDx//OMfoVAo7B4ZGRnScovFgoKCAsTExCA8PBz5+fkwGAxOL5qIvFedtSV8pMaEYWhvbaePK3QRUCgUMldLRK7g8JmPwYMHY+PGjT+uIPDHVcyZMwcff/wx1qxZA61Wi9mzZ2PatGn46quvnFMtEXmtz/br8d/9Bnxz4jwAIFwdIHNFRCQXh8NHYGAgEhIS2rWbTCYsX74cq1atwsSJEwEAK1aswMCBA7Ft2zaMGTOm59USkdea+5/vYKz/cZBpgpbzdBD5K4dvhnDo0CEkJSUhPT0dM2bMQEVFBQCgrKwMjY2NyMnJkfpmZGQgJSUFpaWlna7ParXCbDbbPYjItzQ02aTgUXjDFXj+5mGYNLj9/8QQkX9w6MxHVlYWVq5ciQEDBqC6uhoLFy7ENddcg3379kGv10OlUiEyMtLuPTqdDnq9vtN1FhcXY+HChd0qnog813/36/Hl4bMAAGtjy23vlQpg9oR+UCo5loPInzkUPvLy8qTnw4YNQ1ZWFlJTU/Huu+8iJKR7p1CLiopQWFgovTabzUhOTu7WuojIM9hsAg+t3gVLa+hok6gNYfAgop5dahsZGYkrrrgChw8fxg033ICGhgYYjUa7sx8Gg6HDMSJt1Go11Gp1T8ogIg9TY2mSgsdDE/sBrVetTBgQJ2dZROQhehQ+amtrceTIEdx+++3IzMxEUFAQSkpKkJ+fDwAoLy9HRUUFsrOznVIsEXk2S2MzmmwCerMFABASFIDCGwfIXBUReRqHwsdjjz2Gm266CampqaiqqsKCBQsQEBCA2267DVqtFrNmzUJhYSGio6Oh0Wjw4IMPIjs7m1e6EPmBf5edxNz/fIdmm5DaNCGcx5CI2nPom+HkyZO47bbbcO7cOcTFxWHcuHHYtm0b4uJaTqUuXrwYSqUS+fn5sFqtyM3NxdKlS11SOBF5DktjM97adsIueABAzkCdTBURkSdTCCHE5bu5j9lshlarhclkgkbD+zoQeTpjfQMmvLAZF1ovpV3y25G4fmA8FApAHciJxIj8hSPHb54TJaJu2Xn8PP67X48qk0UKHmmxYbi6bwyCgxg6iKhzDB9E1C2PrN6NU8aL0uvJwxKx5LcjZayIiLwFwwcRdZmlsRl3LN+Bg3ozzK13p73nmjSEBAXgllGcn4eIuobhg4gu6x9bj2LV9gocPVtn1z60lxZ/mDxIpqqIyFsxfBCRnTM1VvxgqLFrW7LpsDSuAwDGpEfj2V8PRXJ0qLvLIyIfwPBBRJLGZhvy/voFztY2dLj87d9lIVQVgCG9tAgKcPi+lEREABg+iOgnztZacba2AQoFcEV8hN2yCRnxGNsvVqbKiMiXMHwQ+aiLDc144b/lOFtr7fJ7zBdbflqJC1fjsznjXVUaEfk5hg8iH7XhewOWf3msW+9NjeFYDiJyHYYPIi91oa4BtktMUHz0TC0AYHhvLW4antTl9SoVCk6LTkQuxfBB5IWeWrsXq7ZXdKnvVX2i8btr0l1cERFR13G4OpEX+vLQ2S71C1cHYkJGvIurISJyDM98EHkhU+vA0A1zxqO/LuIyvYmIPAvDB5EXOXKmFv/YehRmS0v40IYEyVwREZHjGD6IvMjrW47g3W9OAgBCVQGIDFXJXBERkeMYPoi8SNvMo78cloi7xvaBKpDDtojI+zB8EHmwZpvA99VmNDTbAADVJguAlvCRmRotZ2lERN3G8EHkwYo/+R7/6GCiMG0If24hIu/F8EHkwQ5UmwEAseEqhKpa/rmmxoTiypRIGasiIuoZhg8iD9Z2Se3ztwzHhAGcr4OIfAPDB5Ebna6x4OiZOum13mTBq5sOQ3QyTXrF+XoAvKSWiHwLwweRm1xsaEbO/26B2dLk0PvUgUr0iQlzUVVERO7H8EHkJqeM9TBbmhCgVCAt9scwoVQA069KwZAkTYfvS40JQ3QYB5gSke9g+CBystNmC/797UlYG2127frWy2RTokOxsfBaOUojIvIIDB9ETvZSyaFL3nE2QRPsxmqIiDwPwweRk1UbLwIAxvaLQXpsuN2yAKUCN2f2lqMsIiKPwfBB5CSm+kZUnK+H3mwFANw+pg8mDUmQuSoiIs/D8EHkBHXWJox/fpM0LwcARIby8lgioo4wfBA5QcX5epguNkKpaBnTkRoThhHJkXKXRUTkkRg+iHrg6JlabDhgwInWycD6xoVjA69kISK6JIYPoh54dM0e7KowSq91vJKFiOiyGD6IeqCy9YzHjYN0iA5T4bdZKTJXRETk+ZQ9efOiRYugUCjwyCOPSG0WiwUFBQWIiYlBeHg48vPzYTAYelonkUdptgkU/ms3ztY2AAD+NHUIFuUPw7DekfIWRkTkBbodPnbu3InXX38dw4YNs2ufM2cOPvzwQ6xZswZbtmxBVVUVpk2b1uNCiTzJ99VmvLfrFAAgJkzF6c+JiBzQrfBRW1uLGTNm4O9//zuioqKkdpPJhOXLl+PFF1/ExIkTkZmZiRUrVuDrr7/Gtm3bnFY0kdwu1DdIzz96aByCAnp0EpGIyK906xuzoKAAkydPRk5Ojl17WVkZGhsb7dozMjKQkpKC0tLSDtdltVphNpvtHkSerm0+j9F9opGoDZG5GiIi7+LwgNPVq1fj22+/xc6dO9st0+v1UKlUiIyMtGvX6XTQ6/Udrq+4uBgLFy50tAwiWV2obwkfWk4kRkTkMIfCR2VlJR5++GFs2LABwcHOuaSwqKgIhYWF0muz2Yzk5GSnrJv824W6Bpz/yc8jPXXabMX89/ehodkGY2v46B3Fsx5ERI5yKHyUlZXh9OnTGDlypNTW3NyML774Aq+++io+++wzNDQ0wGg02p39MBgMSEjo+B4XarUaarW6e9UTdeLw6Rrk/XUrGpuFSz9nVGq0S9dPROSLHAof119/Pfbu3WvXdtdddyEjIwNz585FcnIygoKCUFJSgvz8fABAeXk5KioqkJ2d7byqiS5jf5UZjc0CgUoFwtTOm85GqQBmjUtDdt9YaEMC0Tcu/PJvIiIiOw59K0dERGDIkCF2bWFhYYiJiZHaZ82ahcLCQkRHR0Oj0eDBBx9EdnY2xowZ47yqiS6jxtIEAJiYEY+/3TFK5mqIiOinnD7D6eLFi6FUKpGfnw+r1Yrc3FwsXbrU2R9D1I4QAqL1V5a28BEezEl8iYg8jUII4dofxR1kNpuh1WphMpmg0WjkLoe8xOHTtfjN66U4X2c/wHRmdioWThnSybuIiMhZHDl+c2Yk8gnbjp5rFzwClApkpcfIVBEREXWG56TJJ5gtLZe+3jQ8CQt/NRgAoApUItyJg02JiMg5+M1MXsvS2IzP9uthbbThm+MXAABx4WreZ4WIyMMxfJBXOFBlxmNr9qDG2ii1VZ6/2K5fFGccJSLyeAwf5BU+2VuNA9Ud3/cnPS4MaTFhiAgORH5mbzdXRkREjmL4IK/QNqZj+qhk3Dr6x+n3o0JV6BMbJldZRETUDQwf5BVOXmj5iaVffDiuTImSuRoiIuoJXmpLHu1iQzPu+78yfH7wNAAggpOGERF5PYYP8mhbD53B+v166fXYfrEyVkNERM7A/40kj3a29seJw777443QBPNqFiIib8fwQR5h6ebDeHtbBX4+23+NteUeLb8Z1ZvBg4jIRzB8kNt8ftCAP6zdB0tjs127AGCsb+z4Ta2G9tK6sDIiInInhg9ym3W7qlBtslyyz9oHrkag0n4oUogqAH3jeDktEZGvYPggtxBC4IM9VQCAorwMTMyIb9cnOToUwUEB7i6NiIjcjOGD3KLsxAXp+bDekeivi5CxGiIikhPDB7nMmRorFn16EKaLjag2/XgfltFp0TJWRUREcmP4IJdZt+sU/vPtSbu2Byf2Q4BSIVNFRETkCRg+yOlqLI3Yd8qMPSeNAIDrBsRh0uAEhKgCcMMgnbzFERGR7Bg+yOlu+/s27Dv14x1ox/aNxa2jU2SsiIiIPAnDBzndIUMtACAtNgxx4WpMGpIgc0VERORJGD7IqRqabLA22QC0zNkRGaqSuSIiIvI0vLEcOVVd63ToABCmZrYlIqL2GD7IqWpbw0dwkBJBAfzrRURE7fHoQE6lN7dMnx4Tppa5EiIi8lQMH+RUq7ZXAACSIoNlroSIiDwVwwc51cWGljvW8swHERF1hiMCqduWf3kMSzcdRrMQUlutpWXMx5QRSXKVRUREHo7hg7rt32Unca6uoV27KlCJIb20MlRERETegOGDuq3W2ggAePm2KzEoUSO1x4WroQ0NkqssIiLycAwf1G111pbxHRkJEegXHy5zNURE5C0YPuiS1u+rxvIvj6HZJtotu1Df8pNLOCcTIyIiB/CoQZe0bPMR7Dlp6nR5RHAgosM4hToREXWdQ+Fj2bJlWLZsGY4fPw4AGDx4MObPn4+8vDwAgMViwaOPPorVq1fDarUiNzcXS5cuhU7H26h7K3Pr1StPTBqAfnHtf1oZmKhBcFCAu8siIiIv5lD46N27NxYtWoT+/ftDCIE333wTU6ZMwa5duzB48GDMmTMHH3/8MdasWQOtVovZs2dj2rRp+Oqrr1xVP7lYTWv4uO6KeAxK0lymNxER0eUphBDtf8x3QHR0NJ5//nncfPPNiIuLw6pVq3DzzTcDAA4ePIiBAweitLQUY8aM6dL6zGYztFotTCYTNBoe7OSWMe9TWBpt2PrEBCRHh8pdDhEReShHjt/dHvPR3NyMNWvWoK6uDtnZ2SgrK0NjYyNycnKkPhkZGUhJSblk+LBarbBarXbFk7y2HjqDTQfPoMbSCEujDQCgCeGls0RE5BwOh4+9e/ciOzsbFosF4eHhWLt2LQYNGoTdu3dDpVIhMjLSrr9Op4Ner+90fcXFxVi4cKHDhZNr/LP0OOa/v9+urU9MKLQMH0RE5CQOh48BAwZg9+7dMJlM+Pe//42ZM2diy5Yt3S6gqKgIhYWF0muz2Yzk5ORur4+65+SFesx8YweOnKmT2u67ti8ClEDu4AQZKyMiIl/jcPhQqVTo168fACAzMxM7d+7EX//6V0yfPh0NDQ0wGo12Zz8MBgMSEjo/eKnVaqjVvAmZ3D7dq7cLHh89OI5TpBMRkUv0+K62NpsNVqsVmZmZCAoKQklJibSsvLwcFRUVyM7O7unHkIttOGAAAAzppcH+hbkMHkRE5DIOnfkoKipCXl4eUlJSUFNTg1WrVmHz5s347LPPoNVqMWvWLBQWFiI6OhoajQYPPvggsrOzu3ylC7nXhgMGVBkv4lytFTuOnwcATB3RC2GcsZSIiFzIoaPM6dOncccdd6C6uhparRbDhg3DZ599hhtuuAEAsHjxYiiVSuTn59tNMkae5187KzD3P3vbtU+9spcM1RARkT/p8TwfzsZ5Ptzjd2/uxMbvTwMAJg9LRIBCgRlZKchKj5G5MiIi8kZumeeDvJuxvhEA8KepQ3D7mFSZqyEiIn/S4wGn5J1qrS3TpveJ4aylRETkXgwffqjO2oSD+hoAQDgHlxIRkZsxfPihVzcdlp5z5lIiInI3hg8/VHm+HkDLWY+02DCZqyEiIn/D8OGH6lrHe8y/aRAUCoXM1RARkb/hD/5+QAiByvMX0dDcDAA4W9sAAIjgeA8iIpIBjz5+4OWSw1i88Yd27ZzJlIiI5MCjjx/Yc9IIAAhVBUAd2PJLW3J0KK5MiZSvKCIi8lsMH36g1tIyxuOFW4bjF0MTZa6GiIj8HQec+oGa1gGm/JmFiIg8AY9GPuj/tp3A8+sPotnWctue+saWgaacUIyIiDwBj0Y+RG+ywGxpxNvbTsDc+lNLG01wIPrGcU4PIiKSH8OHj9jywxnMfGOHXduKO69C37hwAEBshAqhKu5uIiKSH49GPuLbExcAAOpAJcLVgRiUpME1/WMRGMBhPURE5FkYPrzExgMGrPj6mDSO4+eOn22ZMv2+a/tizg1XuLM0IiIihzB8eIlXNx3G7krjZfv114W7vhgiIqIeYPjwEuaLjQCAOTlXoG98xwNHI0NUuLpvjDvLIiIichjDh5dom6sjZ1A8BidpZa6GiIio+xg+PNCq7RU4eqbWrs1U33LmI0IdJEdJRERETsPw4QGsTc3SFOiHTtfiqbV7O+wXoFQgMozhg4iIvBvDh8xO11hww4tfwNQ6pqNNSnQo8oYm2LVdmRwFTTDDBxEReTeGD5ntP2VuFzyCAhS479q++G1WikxVERERuQ7Dh8zagsfYfjF4a1aW1K5QKOQqiYiIyKUYPmRUrq/BMx8fAABoQ4IYOIiIyC9w7m0ZPfHvPThb2wAAiA1Xy1wNERGRezB8yMhgtgIAxqRH497x6TJXQ0RE5B4MHzKqa504rHjaMPSOCpW5GiIiIvdg+JDJxYZmadbSMHWAzNUQERG5D8OHTJ74z3fSc85aSkRE/oThQyaV5+sBABkJEQhR8cwHERH5D4fCR3FxMa666ipEREQgPj4eU6dORXl5uV0fi8WCgoICxMTEIDw8HPn5+TAYDE4t2he0jfeYf9MgmSshIiJyL4fCx5YtW1BQUIBt27Zhw4YNaGxsxI033oi6ujqpz5w5c/Dhhx9izZo12LJlC6qqqjBt2jSnF+4tGppsMNY3tHuYLS2Ti4WrOdUKERH5F4UQQnT3zWfOnEF8fDy2bNmC8ePHw2QyIS4uDqtWrcLNN98MADh48CAGDhyI0tJSjBkz5rLrNJvN0Gq1MJlM0Gg03S3NI1SbLmLSS1vbTZ/+U58/ei3S48LdWBUREZHzOXL87tGYD5PJBACIjo4GAJSVlaGxsRE5OTlSn4yMDKSkpKC0tLQnH+WV9p40XTJ4DErUIDmal9gSEZF/6fY5f5vNhkceeQRjx47FkCFDAAB6vR4qlQqRkZF2fXU6HfR6fYfrsVqtsFqt0muz2dzdkjxOXUPLuI5x/WLx5t2j2y1XKngPFyIi8j/dPvNRUFCAffv2YfXq1T0qoLi4GFqtVnokJyf3aH2epNbSEj4iggMRoFS0ezB4EBGRP+pW+Jg9ezY++ugjbNq0Cb1795baExIS0NDQAKPRaNffYDAgISGhw3UVFRXBZDJJj8rKyu6U5JHaJhHjoFIiIqIfORQ+hBCYPXs21q5di88//xxpaWl2yzMzMxEUFISSkhKprby8HBUVFcjOzu5wnWq1GhqNxu7hK9rOfIQxfBAREUkcOioWFBRg1apVeP/99xERESGN49BqtQgJCYFWq8WsWbNQWFiI6OhoaDQaPPjgg8jOzu7SlS6+ptb6488uRERE1MKho+KyZcsAANddd51d+4oVK3DnnXcCABYvXgylUon8/HxYrVbk5uZi6dKlTinW29TyZxciIqJ2HDoqdmVKkODgYCxZsgRLlizpdlHe6qvDZ7FqewWabS1/TrsqLwAAwnnmg4iISMKjohO98N9y7KowtmtPigxxfzFEREQeiuHDiYz1LROK3Ts+HSmtk4fFRahxbf84OcsiIiLyKAwfTlTTenXL1BG9MCjJd67aISIiciaGjx6qPF+PD/ZUoalZwNw6lTqvbiEiIuocj5I99MzHB/DZfoP0WqkAtKFBMlZERETk2Rg+euiU8SIAYGJGPBK1wRjVJwqaYIYPIiKizjB8dMGeSiO++OFMh8tOXmgJH7Mn9sPIlCh3lkVEROSVGD664Pf/Vwa92XLJPvERajdVQ0RE5N0YPi7DZhMw1LQEj2lX9oI6KKBdn0FJGvSOCnV3aURERF6J4eMy6hub0Tax659/PRQhqvbhg4iIiLrOobva+iNT6+WzAUoFgoP4x0VERNRTPJpextbWgaaqACUUCoXM1RAREXk/ho/LaLszLc96EBEROQePqJfRFj5+MTRR5kqIiIh8A8PHZXx+8DQAIJxTphMRETkFw8cllJ24gO9OmgAA2hDOWkpEROQMDB+X8O2JC9LzKSN6yVgJERGR72D4uITTrZOL3Ts+Hb0iQ2SuhoiIyDcwfFxC22DTCDXHexARETkLw8clmC0t4YODTYmIiJyH4aMT6/dV4+PvqgEA4TzzQURE5DQMH514f3eV9HxQkkbGSoiIiHwLw0cn2sZ7/OEXAzE4SStzNURERL6D4aMTNa3jPVJjQmWuhIiIyLcwfHTAWN+A3ZVGAEBEMCcXIyIiciaGjw5sLj8jPU+LDZOxEiIiIt/D8PEzxvoGLNl0GAAwKjUKCdpgmSsiIiLyLQwfP/OX9Qdx6HQtACAzNUrmaoiIiHwPw8fPVJ6/CAAIUCrw/8akylwNERGR72H4+JkaSyMA4PX/l4nkaF7pQkRE5GwMHz+z56QJABDBKdWJiIhcguHjJ6qMF6XncRFqGSshIiLyXQ6Hjy+++AI33XQTkpKSoFAosG7dOrvlQgjMnz8fiYmJCAkJQU5ODg4dOuSsel3qk73V0vP0uHAZKyEiIvJdDoePuro6DB8+HEuWLOlw+XPPPYeXX34Zr732GrZv346wsDDk5ubCYrH0uFhXO3q2DgCQHse5PYiIiFzF4YENeXl5yMvL63CZEAIvvfQS/ud//gdTpkwBAPzzn/+ETqfDunXrcOutt/asWhdrm1L91yN6yVwJERGR73LqmI9jx45Br9cjJydHatNqtcjKykJpaakzP8olaluvdNFxYjEiIiKXceolHXq9HgCg0+ns2nU6nbTs56xWK6xWq/TabDY7s6QuszQ2Y1PrtOoaXulCRETkMrJf7VJcXAytVis9kpOTZalj5/Hz0vO+HGxKRETkMk4NHwkJCQAAg8Fg124wGKRlP1dUVASTySQ9KisrnVlSl5kutvzkEhehRn9dhCw1EBER+QOnho+0tDQkJCSgpKREajObzdi+fTuys7M7fI9arYZGo7F7yKFtsOnw3lpZPp+IiMhfODy4oba2FocPH5ZeHzt2DLt370Z0dDRSUlLwyCOP4JlnnkH//v2RlpaGefPmISkpCVOnTnVm3U7XNq16RHCQzJUQERH5NofDxzfffIMJEyZIrwsLCwEAM2fOxMqVK/HEE0+grq4O9957L4xGI8aNG4f169cjONizryBpO/PBadWJiIhcy+Ej7XXXXQchRKfLFQoFnn76aTz99NM9KszdGD6IiIjcQ/arXTzFsdbZTfmzCxERkWsxfADYcew8tvzQMscHz3wQERG5FsMHgCff+056Pr5/nIyVEBER+T6GDwAXG5oBAH+aMhjJ0aEyV0NEROTb/D58HD9bh2pTyx13Jw7UXaY3ERER9ZTfh4+FH+6XnseEqWSshIiIyD/4ffg4XdNyU7tbMnsjOChA5mqIiIh8n9+Hjwt1DQCAW0enyFwJERGRf/Dr8LH3pAlVreM9tCGc34OIiMgd/Dp8lB49Kz1Pjg6RsRIiIiL/4dfhw1jfcjO5mdmpUAdyvAcREZE7+HX4ePebkwCAKF7lQkRE5DZ+HT6Uipb/ang/FyIiIrfx2/AhhMC51itdbhzMycWIiIjcxW/Dx3OflaPZJgAAMWFqmashIiLyH34bPrYearmLrTpQiRAVB5sSERG5i9+Gj7YrXVbdM0bmSoiIiPyLX4aPbUfP4eSFiwCAqFAONiUiInInvwwfy788Jj3XaYJlrISIiMj/+GX4OFvbcjO5orwMhKkDZa6GiIjIv/hl+DhX23KJbWZqlMyVEBER+R+/DB/nW+f3iAnnJbZERETu5nfh42ytFbXWJgBATDinVSciInI3vwsfr20+Ij2P4HgPIiIit/O78NE2pfrw3looFAqZqyEiIvI/fhc+yvU1AIAZWakyV0JEROSf/Cp8fLK3GgeqzQAATQgnFyMiIpKDX4WPjQcM0vOstGgZKyEiIvJffhU+DDUWAMBL00cgKoxXuhAREcnBr8JHrbUZABDOq1yIiIhk41/hw9JyJ1tOqU5ERCQfvwofda1nPiKCGT6IiIjk4rLwsWTJEvTp0wfBwcHIysrCjh07XPVRXdY2synPfBAREcnHJeHjX//6FwoLC7FgwQJ8++23GD58OHJzc3H69GlXfFyX2GwCdQ0t4YNjPoiIiOTjkvDx4osv4p577sFdd92FQYMG4bXXXkNoaCjeeOMNV3xcl9Q3NkOIlucMH0RERPJxevhoaGhAWVkZcnJyfvwQpRI5OTkoLS1t199qtcJsNts9XKGu9ScXpQIIDvKroS5EREQexelH4bNnz6K5uRk6nc6uXafTQa/Xt+tfXFwMrVYrPZKTk51dEgCgxvLjTy68pwsREZF8ZD8FUFRUBJPJJD0qKytd8jnakCA8fH1/zBqX7pL1ExERUdc4ffBDbGwsAgICYDAY7NoNBgMSEhLa9Ver1VCr1c4uo524CDXm3HCFyz+HiIiILs3pZz5UKhUyMzNRUlIitdlsNpSUlCA7O9vZH0dERERexiWXfRQWFmLmzJkYNWoURo8ejZdeegl1dXW46667XPFxRERE5EVcEj6mT5+OM2fOYP78+dDr9RgxYgTWr1/fbhAqERER+R+FEG2zX3gGs9kMrVYLk8kEjUYjdzlERETUBY4cv2W/2oWIiIj8C8MHERERuRXDBxEREbkVwwcRERG5FcMHERERuRXDBxEREbkVwwcRERG5FcMHERERuRXDBxEREbmVS6ZX74m2CVfNZrPMlRAREVFXtR23uzJxuseFj5qaGgBAcnKyzJUQERGRo2pqaqDVai/Zx+Pu7WKz2VBVVYWIiAgoFAqnrttsNiM5ORmVlZU+ed8YX98+wPe3kdvn/Xx9G319+wDf30ZXbZ8QAjU1NUhKSoJSeelRHR535kOpVKJ3794u/QyNRuOTf6Ha+Pr2Ab6/jdw+7+fr2+jr2wf4/ja6Yvsud8ajDQecEhERkVsxfBAREZFb+VX4UKvVWLBgAdRqtdyluISvbx/g+9vI7fN+vr6Nvr59gO9voydsn8cNOCUiIiLf5ldnPoiIiEh+DB9ERETkVgwfRERE5FYMH0RERORWfhM+lixZgj59+iA4OBhZWVnYsWOH3CV1SXFxMa666ipEREQgPj4eU6dORXl5uV2f6667DgqFwu5x33332fWpqKjA5MmTERoaivj4eDz++ONoampy56Z06o9//GO7+jMyMqTlFosFBQUFiImJQXh4OPLz82EwGOzW4cnb16dPn3bbp1AoUFBQAMD79t8XX3yBm266CUlJSVAoFFi3bp3dciEE5s+fj8TERISEhCAnJweHDh2y63P+/HnMmDEDGo0GkZGRmDVrFmpra+36fPfdd7jmmmsQHByM5ORkPPfcc67eNMmltrGxsRFz587F0KFDERYWhqSkJNxxxx2oqqqyW0dH+33RokV2feTaxsvtwzvvvLNd7ZMmTbLr4837EECH/yYVCgWef/55qY8n78OuHBuc9d25efNmjBw5Emq1Gv369cPKlSt7vgHCD6xevVqoVCrxxhtviP3794t77rlHREZGCoPBIHdpl5WbmytWrFgh9u3bJ3bv3i1+8YtfiJSUFFFbWyv1ufbaa8U999wjqqurpYfJZJKWNzU1iSFDhoicnByxa9cu8cknn4jY2FhRVFQkxya1s2DBAjF48GC7+s+cOSMtv++++0RycrIoKSkR33zzjRgzZoy4+uqrpeWevn2nT5+227YNGzYIAGLTpk1CCO/bf5988on4wx/+IN577z0BQKxdu9Zu+aJFi4RWqxXr1q0Te/bsEb/61a9EWlqauHjxotRn0qRJYvjw4WLbtm1i69atol+/fuK2226TlptMJqHT6cSMGTPEvn37xDvvvCNCQkLE66+/Lvs2Go1GkZOTI/71r3+JgwcPitLSUjF69GiRmZlpt47U1FTx9NNP2+3Xn/67lXMbL7cPZ86cKSZNmmRX+/nz5+36ePM+FELYbVt1dbV44403hEKhEEeOHJH6ePI+7MqxwRnfnUePHhWhoaGisLBQHDhwQLzyyisiICBArF+/vkf1+0X4GD16tCgoKJBeNzc3i6SkJFFcXCxjVd1z+vRpAUBs2bJFarv22mvFww8/3Ol7PvnkE6FUKoVer5fali1bJjQajbBara4st0sWLFgghg8f3uEyo9EogoKCxJo1a6S277//XgAQpaWlQgjP376fe/jhh0Xfvn2FzWYTQnj3/vv5l7rNZhMJCQni+eefl9qMRqNQq9XinXfeEUIIceDAAQFA7Ny5U+rz6aefCoVCIU6dOiWEEGLp0qUiKirKbvvmzp0rBgwY4OItaq+jA9fP7dixQwAQJ06ckNpSU1PF4sWLO32Pp2xjZ+FjypQpnb7HF/fhlClTxMSJE+3avGUfCtH+2OCs784nnnhCDB482O6zpk+fLnJzc3tUr8//7NLQ0ICysjLk5ORIbUqlEjk5OSgtLZWxsu4xmUwAgOjoaLv2t99+G7GxsRgyZAiKiopQX18vLSstLcXQoUOh0+mkttzcXJjNZuzfv989hV/GoUOHkJSUhPT0dMyYMQMVFRUAgLKyMjQ2Ntrtv4yMDKSkpEj7zxu2r01DQwPeeust3H333XY3TvT2/dfm2LFj0Ov1dvtLq9UiKyvLbn9FRkZi1KhRUp+cnBwolUps375d6jN+/HioVCqpT25uLsrLy3HhwgU3bU3XmUwmKBQKREZG2rUvWrQIMTExuPLKK/H888/bnc729G3cvHkz4uPjMWDAANx///04d+6ctMzX9qHBYMDHH3+MWbNmtVvmLfvw58cGZ313lpaW2q2jrU9Pj58ed2M5Zzt79iyam5vt/nABQKfT4eDBgzJV1T02mw2PPPIIxo4diyFDhkjtv/3tb5GamoqkpCR89913mDt3LsrLy/Hee+8BAPR6fYfb37ZMbllZWVi5ciUGDBiA6upqLFy4ENdccw327dsHvV4PlUrV7ktdp9NJtXv69v3UunXrYDQaceedd0pt3r7/fqqtno7q/en+io+Pt1seGBiI6Ohouz5paWnt1tG2LCoqyiX1d4fFYsHcuXNx22232d2k66GHHsLIkSMRHR2Nr7/+GkVFRaiursaLL74IwLO3cdKkSZg2bRrS0tJw5MgRPPXUU8jLy0NpaSkCAgJ8bh+++eabiIiIwLRp0+zavWUfdnRscNZ3Z2d9zGYzLl68iJCQkG7V7PPhw5cUFBRg3759+PLLL+3a7733Xun50KFDkZiYiOuvvx5HjhxB37593V2mw/Ly8qTnw4YNQ1ZWFlJTU/Huu+92+y+2p1q+fDny8vKQlJQktXn7/vNnjY2N+M1vfgMhBJYtW2a3rLCwUHo+bNgwqFQq/P73v0dxcbHHT9t96623Ss+HDh2KYcOGoW/fvti8eTOuv/56GStzjTfeeAMzZsxAcHCwXbu37MPOjg2ezOd/domNjUVAQEC7Eb4GgwEJCQkyVeW42bNn46OPPsKmTZvQu3fvS/bNysoCABw+fBgAkJCQ0OH2ty3zNJGRkbjiiitw+PBhJCQkoKGhAUaj0a7PT/eft2zfiRMnsHHjRvzud7+7ZD9v3n9t9Vzq31tCQgJOnz5tt7ypqQnnz5/3qn3aFjxOnDiBDRs2XPbW5FlZWWhqasLx48cBeMc2tklPT0dsbKzd30lf2IcAsHXrVpSXl1/23yXgmfuws2ODs747O+uj0Wh69D+HPh8+VCoVMjMzUVJSIrXZbDaUlJQgOztbxsq6RgiB2bNnY+3atfj888/bneLryO7duwEAiYmJAIDs7Gzs3bvX7sui7cty0KBBLqm7J2pra3HkyBEkJiYiMzMTQUFBdvuvvLwcFRUV0v7zlu1bsWIF4uPjMXny5Ev28+b9l5aWhoSEBLv9ZTabsX37drv9ZTQaUVZWJvX5/PPPYbPZpOCVnZ2NL774Ao2NjVKfDRs2YMCAAR5xur4teBw6dAgbN25ETEzMZd+ze/duKJVK6ecKT9/Gnzp58iTOnTtn93fS2/dhm+XLlyMzMxPDhw+/bF9P2oeXOzY467szOzvbbh1tfXp8/OzRcFUvsXr1aqFWq8XKlSvFgQMHxL333isiIyPtRvh6qvvvv19otVqxefNmu8u96uvrhRBCHD58WDz99NPim2++EceOHRPvv/++SE9PF+PHj5fW0XY51Y033ih2794t1q9fL+Li4jzmUtRHH31UbN68WRw7dkx89dVXIicnR8TGxorTp08LIVouF0tJSRGff/65+Oabb0R2drbIzs6W3u/p2ydEyxVWKSkpYu7cuXbt3rj/ampqxK5du8SuXbsEAPHiiy+KXbt2SVd6LFq0SERGRor3339ffPfdd2LKlCkdXmp75ZVXiu3bt4svv/xS9O/f3+4yTaPRKHQ6nbj99tvFvn37xOrVq0VoaKjbLtO81DY2NDSIX/3qV6J3795i9+7ddv8u264Q+Prrr8XixYvF7t27xZEjR8Rbb70l4uLixB133OER23ip7aupqRGPPfaYKC0tFceOHRMbN24UI0eOFP379xcWi0VahzfvwzYmk0mEhoaKZcuWtXu/p+/Dyx0bhHDOd2fbpbaPP/64+P7778WSJUt4qa0jXnnlFZGSkiJUKpUYPXq02LZtm9wldQmADh8rVqwQQghRUVEhxo8fL6Kjo4VarRb9+vUTjz/+uN08EUIIcfz4cZGXlydCQkJEbGysePTRR0VjY6MMW9Te9OnTRWJiolCpVKJXr15i+vTp4vDhw9LyixcvigceeEBERUWJ0NBQ8etf/1pUV1fbrcOTt08IIT777DMBQJSXl9u1e+P+27RpU4d/J2fOnCmEaLncdt68eUKn0wm1Wi2uv/76dtt97tw5cdttt4nw8HCh0WjEXXfdJWpqauz67NmzR4wbN06o1WrRq1cvsWjRIndt4iW38dixY53+u2ybu6WsrExkZWUJrVYrgoODxcCBA8Wzzz5rd/CWcxsvtX319fXixhtvFHFxcSIoKEikpqaKe+65p93/rHnzPmzz+uuvi5CQEGE0Gtu939P34eWODUI477tz06ZNYsSIEUKlUon09HS7z+guRetGEBEREbmFz4/5ICIiIs/C8EFERERuxfBBREREbsXwQURERG7F8EFERERuxfBBREREbsXwQURERG7F8EFERERuxfBBREREbsXwQURERG7F8EFERERuxfBBREREbvX/AaGUb6snnhBTAAAAAElFTkSuQmCC"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"read_xy(\n",
|
||
" \"/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/stick-probability/1/5.csv\").cr.plot()"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 68,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "[<matplotlib.lines.Line2D at 0x1741b1600>]"
|
||
},
|
||
"execution_count": 68,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGdCAYAAADwjmIIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIlklEQVR4nO3deXwU9eHG8c/m2E0C2YQASQgECCBHuAIEYjyo1kikaEWtIqIi4oENVojlaj37a4tiVazgbcWqKNCKKAiUchYJVyBcyg0GCJtwZXNArt35/YFsSUUlkDDZ3ef9es3L7Mx3J89mgX2czMzXYhiGgYiIiIiPCTA7gIiIiEhdUMkRERERn6SSIyIiIj5JJUdERER8kkqOiIiI+CSVHBEREfFJKjkiIiLik1RyRERExCcFmR3ATG63m7y8PMLDw7FYLGbHERERkfNgGAbFxcXExcUREPDDx2v8uuTk5eURHx9vdgwRERG5AAcOHKBFixY/uN2vS054eDhw+odkt9tNTiMiIiLno6ioiPj4eM/n+A/x65Jz5ldUdrtdJUdERMTL/NSpJjrxWERERHySSo6IiIj4JJUcERER8UkqOSIiIuKTVHJERETEJ6nkiIiIiE9SyRERERGfpJIjIiIiPkklR0RERHySSo6IiIj4JJUcERER8UkqOSIiIuKTVHJERESkVhUUlfHuyn1kzsgxNYdfz0IuIiIitcN5spIF2w4zJyePrL3HMIzT6x+5pi2XxYSbkkklR0RERC7IqQoXi7fn83lOHst2HKHC5fZs69kykpuTmhMdHmJaPpUcEREROW+VLjcrdx/li5w8Fm5zUFrh8mxrH9OQm5Oa88vuccRHhZmY8jSVHBEREflRbrdBdu4JPs/JY96WwxwvrfBsax4Zyi+T4rg5KY6OsXYTU36fSo6IiIh8j2EYfHO4mM835fHFpjwOFZ7ybGvcwMqN3Zrxy6Q4erZshMViMTHpD1PJEREREY/cYyf5fNMh5uTksaugxLO+oS2I9M6x/DIpjivbNiYosP5foK2SIyIi4ucKisuYt/n0lVE5Bwo9662BAfy8YzS/TIrj5x2jCQkONC/kBVDJERER8UNFZZUs2Org85w8Vu05ivu7S74DLHBF2yb8MimO9M6xRIQGmxv0IqjkiIiI+ImyShdLthcwJ+cQS3ccoaLqv5d8J8VHcnNSHAO6NTP1su/apJIjIiLiw6pcbr7ac4w5OYf417Z8SsqrPNsui27IzUlx3NQ9jlaNG5iYsm6o5IiIiPgYwzDYkHuCOTl5zNt8mGP/c8n3Td3PXPIdXm+vjKoNKjkiIiI+YrujiM9z8vh8Ux4HT/z3ku+oBlYGdG3Gzd9d8h0Q4LvF5mwqOSIiIl7swPGTfL4pj89z8tiRX+xZ38AaSHrnWG5KiuOqdk0I9oJLvmubSo6IiIiXOVJczpdbDjMn5xAbcgs9662BAVzToSk3JzXn5x2jCbV61yXftU0lR0RExAsUl1WycFs+c3IO8dXu/17ybbHAFW0bc3P35qR38e5LvmubSo6IiEg9VVbpYtmOAubk5LF4e0G1S767x0dyc/c4buzWjGi7b1zyXdtUckREROqRKpebrL3HmJOTx8KtDorPuuS7bdMGDExqzk3d42jdxPcu+a5tKjkiIiIXwTAMyqvclJZXUVruoqS8itKKqtP//W4pKXed9fX/rKs21kVpRRWG8d/9x0WEcFP3OH6ZFEdiM7tPX/Jd21RyRETE71S63GcVDtf/FJLvvq5wnVVIqjj5XQE5u5Cc+brKbfz0N62BRmHB/KJrM25Oak5yK/+55Lu2qeSIiIjXc7sNvticx+6CknOWkDNHV86sO/vcltoUGhxIA1sQDW2n/3v666D/rrNWX9fAFnjW9iDCrKcfRzWwesUs3/WdSo6IiHi14rJKMmduYtHX+TV+rjUwgAa2wP8pHucuJD9YXM48zxpEoI641CsqOSIi4rV2F5Tw0Afr2XukFGtgALf1ak5EqPXHC4n1v+usQTpa4stq9O6+/vrrdOvWDbvdjt1uJzU1lfnz53u2l5WVkZGRQePGjWnYsCG33XYb+fnVm3Vubi4DBgwgLCyM6OhoxowZQ1VVVbUxy5Yto2fPnthsNtq1a8e0adO+l2Xq1Km0bt2akJAQUlJSWLt2bU1eioiIeLmF2xwMnPoVe4+U0iwihJkjUpl4azfG9+/IyJ9fxrArE7gjOZ5fdG3Gz9o3pVerKDrG2omPCqNRA6sKjh+o0TvcokULnnvuObKzs1m/fj0///nPufnmm9m2bRsAo0eP5osvvmDWrFksX76cvLw8br31Vs/zXS4XAwYMoKKiglWrVvH+++8zbdo0nnrqKc+Yffv2MWDAAK699lpycnIYNWoUDzzwAAsXLvSMmTFjBpmZmTz99NNs2LCB7t27k56eTkFBwcX+PEREpJ5zuQ1e/NcOHv4gm5LyKlISovji0atIio80O5rUN8ZFatSokfHOO+8YhYWFRnBwsDFr1izPtm+++cYAjKysLMMwDOPLL780AgICDIfD4Rnz+uuvG3a73SgvLzcMwzDGjh1rdO7cudr3GDRokJGenu553KdPHyMjI8Pz2OVyGXFxccbEiRNrlN3pdBqA4XQ6a/Q8ERExR2FphTH0b2uMVuPmGq3GzTWe/XybUVHlMjuWXGLn+/l9wcfqXC4Xn3zyCaWlpaSmppKdnU1lZSVpaWmeMR07dqRly5ZkZWUBkJWVRdeuXYmJifGMSU9Pp6ioyHM0KCsrq9o+zow5s4+Kigqys7OrjQkICCAtLc0z5oeUl5dTVFRUbREREe+ww1HML6euZNmOI4QEBzB5UBJP3ZTolxNPyvmp8Z+MLVu20LBhQ2w2GyNGjGD27NkkJibicDiwWq1ERkZWGx8TE4PD4QDA4XBUKzhntp/Z9mNjioqKOHXqFEePHsXlcp1zzJl9/JCJEycSERHhWeLj42v68kVExARzN+cxcOpXfHvsJC0ahfLPR65gYI/mZseSeq7GJadDhw7k5OSwZs0aHnnkEYYOHcrXX39dF9lq3YQJE3A6nZ7lwIEDZkcSEZEfUeVyM3H+N4ycvpFTlS6uateEL0ZeRee4CLOjiReo8SXkVquVdu3aAdCrVy/WrVvHK6+8wqBBg6ioqKCwsLDa0Zz8/HxiY2MBiI2N/d5VUGeuvjp7zP9ekZWfn4/dbic0NJTAwEACAwPPOebMPn6IzWbDZrPV9CWLiIgJTpRW8OjHG1m5+ygAI37WljHpHXQvGjlvF/2LTLfbTXl5Ob169SI4OJjFixd7tu3YsYPc3FxSU1MBSE1NZcuWLdWuglq0aBF2u53ExETPmLP3cWbMmX1YrVZ69epVbYzb7Wbx4sWeMSIi4t22HnJy46srWbn7KGHWQKbc1YPx/Tuq4EiN1OhIzoQJE+jfvz8tW7akuLiY6dOns2zZMhYuXEhERATDhw8nMzOTqKgo7HY7jz76KKmpqVx++eUA9OvXj8TERO655x4mTZqEw+HgiSeeICMjw3OEZcSIEUyZMoWxY8dy//33s2TJEmbOnMm8efM8OTIzMxk6dCjJycn06dOHyZMnU1payrBhw2rxRyMiImb4dMNBJny6hfIqN60ah/HWPcl0iA03O5Z4oRqVnIKCAu69914OHz5MREQE3bp1Y+HChVx//fUAvPzyywQEBHDbbbdRXl5Oeno6r732muf5gYGBzJ07l0ceeYTU1FQaNGjA0KFD+cMf/uAZk5CQwLx58xg9ejSvvPIKLVq04J133iE9Pd0zZtCgQRw5coSnnnoKh8NBUlISCxYs+N7JyCIi4j0qXW7+NO8bpq3aD8C1HZoyeVAPIsKCzQ0mXstiGEbtTp3qRYqKioiIiMDpdGK3282OIyLit44Ul5MxfQNr9x0H4Dc/b8eotPaafVvO6Xw/vzV3lYiImCrnQCEjPsjGUVRGQ1sQL97RnfTOP34hicj5UMkRERHTzFiXy5OfbaPC5aZN0wa8dU8y7aIbmh1LfIRKjoiIXHIVVW6e/WIbH63JBaBfYgwv3tGd8BCdfyO1RyVHREQuqfyiMn790Qayvz2BxQKZae3JuLadzr+RWqeSIyIil8z6/cd55KMNHCkuJzwkiL/e2YNrO0abHUt8lEqOiIjUOcMw+HBNLn/4YhuVLoMOMeG8eU8vWjdpYHY08WEqOSIiUqfKKl08NWcrM9cfBGBA12ZM+lU3Gtj0ESR1S3/CRESkzuQVnuKRD7PZdNBJgAXG3dCRh/q2wWLR+TdS91RyRESkTmTtOcbI6Rs4VlpBZFgwUwb35KrLmpgdS/yISo6IiNQqwzD421f7+fOX3+ByGyQ2s/PmPb2IjwozO5r4GZUcERGpNacqXIz/dDNzcvIAuKVHc/58S1dCrYEmJxN/pJIjIiK14sDxkzz8QTZfHy4iMMDCEwM6cd8VrXX+jZhGJUdERC7af3Yd4dGPN1J4spLGDaxMHdKTy9s0NjuW+DmVHBERuWCGYfDmir1MWrAdtwHdW0Tw+t29iIsMNTuaiEqOiIhcmNLyKsb+YzPzthwG4I7kFvzh5i6EBOv8G6kfVHJERKTG9h8t5aEP1rMzv4TgQAtP39SZISktdf6N1CsqOSIiUiNLtufz2Cc5FJdV0TTcxht396RXqyizY4l8j0qOiIicF7fbYMrS3bz8750YBvRq1YjXh/Qk2h5idjSRc1LJERGRn1RcVknmzE0s+jofgLsvb8lTN3bGGhRgcjKRH6aSIyIiP2p3QQkPfbCevUdKsQYG8MeBXbijd7zZsUR+kkqOiIj8oIXbHDw+cxMl5VU0iwjh9bt7kRQfaXYskfOikiMiIt/jchu8vGgnU5buBiAlIYqpQ3rSpKHN5GQi508lR0REqnGerOSxGRtZtuMIAPdfmcCEX3QkOFDn34h3UckRERGP7Y4iHv4gm2+PnSQkOIDnbu3GwB7NzY4lckFUckREBIC5m/MYM2szpypdtGgUypv39KJzXITZsUQumEqOiIifq3K5eWHhDt5csReAq9o14dXBPWjUwGpyMpGLo5IjIuKHDMMg9/hJ1uw7zj+yD7J233EARvysLWPSOxAYoOkZxPup5IiI+AG322BXQQlr9x1j7f4TrN13jPyics/2MGsgk37VjRu7xZmYUqR2qeSIiPigKpebrw8XsXbfcdbsO866/ccpPFlZbUxwoIXuLSLpnRDF7b1a0KZpQ5PSitQNlRwRER9QXuVi80Gnp9Rk7z9OaYWr2piQ4AB6tWpEn9aN6ZMQRY+WkYQEB5qUWKTuqeSIiHihkxVVbPi2kLX7jrFm33E2HiikospdbUx4SBC9W0fRJ+H00iUuQnNNiV9RyRER8QLOk5Ws//a450jN1kNOqtxGtTFNGlpPF5rWUfRJaEyH2HCdQCx+TSVHRKQeOlJczrr9/y012x1FGNU7DXERIaS0aew5UtOmSQMsFpUakTNUckRE6oGDJ06ydt9xz7L3aOn3xrRp0sBTaPokRNGiUZgJSUW8h0qOiMglZhgGe4+WVis1hwpPVRtjsUCHmHBSEk7/6ql3QiOiw0NMSizinVRyRETqmMttsMNR/N09ak6XmqMlFdXGBAZY6NI84nSpaR1FcutGRIbpjsMiF0MlR0SkllW63Gw95PQcpVm3/zhFZVXVxliDAugRH+k5UtOjZSQNbPonWaQ26W+UiMhFKqt0kXOg0FNqsr89wanK6veoaWANpFfrqO9KTRTdWkRgC9I9akTqkkqOiMgFqKhy89aKPSzbcYTNB51UuKrfoyYyLJjeZ5WaxGZ2ggJ1jxqRS0klR0TkAry0aCdvLN/jeRwdbqNPQpTn10+XRTckQPeoETGVSo6ISA0ddp7iva/2AfDbfu25sVscrRqH6R41IvVMjY6dTpw4kd69exMeHk50dDQDBw5kx44d1cZcc801WCyWasuIESOqjcnNzWXAgAGEhYURHR3NmDFjqKqqflLesmXL6NmzJzabjXbt2jFt2rTv5Zk6dSqtW7cmJCSElJQU1q5dW5OXIyJyQSYv2kV5lZverRuRcW07WusmfCL1Uo1KzvLly8nIyGD16tUsWrSIyspK+vXrR2lp9ZtWPfjggxw+fNizTJo0ybPN5XIxYMAAKioqWLVqFe+//z7Tpk3jqaee8ozZt28fAwYM4NprryUnJ4dRo0bxwAMPsHDhQs+YGTNmkJmZydNPP82GDRvo3r076enpFBQUXOjPQkTkJ+3KL2ZW9gEAxvfvpHIjUo9ZDON/bxR+/o4cOUJ0dDTLly+nb9++wOkjOUlJSUyePPmcz5k/fz433ngjeXl5xMTEAPDGG28wbtw4jhw5gtVqZdy4ccybN4+tW7d6nnfnnXdSWFjIggULAEhJSaF3795MmTIFALfbTXx8PI8++ijjx48/r/xFRUVERETgdDqx2+0X+mMQET/ywPvr+fc3+aR3juHNe5LNjiPil8738/uiTvV3Op0AREVFVVv/0Ucf0aRJE7p06cKECRM4efKkZ1tWVhZdu3b1FByA9PR0ioqK2LZtm2dMWlpatX2mp6eTlZUFQEVFBdnZ2dXGBAQEkJaW5hkjIlLb1u0/zr+/yScwwMKY9I5mxxGRn3DBJx673W5GjRrFlVdeSZcuXTzr77rrLlq1akVcXBybN29m3Lhx7Nixg08//RQAh8NRreAAnscOh+NHxxQVFXHq1ClOnDiBy+U655jt27f/YOby8nLKy8s9j4uKii7glYuIPzIMg+fmn/735Y7keNpFNzQ5kYj8lAsuORkZGWzdupWVK1dWW//QQw95vu7atSvNmjXjuuuuY8+ePbRt2/bCk9aCiRMn8uyzz5qaQUS807++zif72xOEBAcwKu0ys+OIyHm4oF9XjRw5krlz57J06VJatGjxo2NTUlIA2L17NwCxsbHk5+dXG3PmcWxs7I+OsdvthIaG0qRJEwIDA8855sw+zmXChAk4nU7PcuDAgfN4tSLi76pcbiYtOH0UZ/hVCcTYNVGmiDeoUckxDIORI0cye/ZslixZQkJCwk8+JycnB4BmzZoBkJqaypYtW6pdBbVo0SLsdjuJiYmeMYsXL662n0WLFpGamgqA1WqlV69e1ca43W4WL17sGXMuNpsNu91ebRER+Sn/yD7IniOlNAoL5uGfmXtEWkTOX41+XZWRkcH06dOZM2cO4eHhnnNoIiIiCA0NZc+ePUyfPp1f/OIXNG7cmM2bNzN69Gj69u1Lt27dAOjXrx+JiYncc889TJo0CYfDwRNPPEFGRgY2mw2AESNGMGXKFMaOHcv999/PkiVLmDlzJvPmzfNkyczMZOjQoSQnJ9OnTx8mT55MaWkpw4YNq62fjYgIpypcvPzvnQCM/Pll2EOCTU4kIufNqAHgnMt7771nGIZh5ObmGn379jWioqIMm81mtGvXzhgzZozhdDqr7Wf//v1G//79jdDQUKNJkybG448/blRWVlYbs3TpUiMpKcmwWq1GmzZtPN/jbK+++qrRsmVLw2q1Gn369DFWr15dk5djOJ1OA/hePhGRM6Ys2WW0GjfXuPK5xUZZZZXZcUTEOP/P74u6T463031yROTHnCitoO+kpRSXVzF5UBIDezQ3O5KIcInukyMi4sumLN1NcXkVnZrZ+WX3OLPjiEgNqeSIiJzDgeMn+SDrWwDG9++oGcVFvJBKjojIOby8aCcVLjdXtmtM38uamB1HRC6ASo6IyP/4Oq+I2TmHABh3Q0dNwinipVRyRET+x/MLtmMYcGO3ZnRrEWl2HBG5QCo5IiJnWbX7KMt3HiEowMKY9A5mxxGRi6CSIyLyHcMweO676RuGpLSkVeMGJicSkYuhkiMi8p15Ww6z+aCTBtZAHr1Ok3CKeDuVHBERoNLl5oWFOwB4qG9bmjS0mZxIRC6WSo6ICPDJ2ly+PXaSJg2tPHD1T08+LCL1n0qOiPi9kvIqXlm8C4DHrruMBrYazV0sIvWUSo6I+L13/rOXoyUVtG4cxp19WpodR0RqiUqOiPi1I8XlvL1iLwBj0jsSHKh/FkV8hf42i4hfe3XJLkorXHRvEcEvusaaHUdEapFKjoj4rf1HS5m+JheAcf01fYOIr1HJERG/9Zd/7aDKbXBNh6Zc0VaTcIr4GpUcEfFLmw4UMnfzYSwWGJve0ew4IlIHVHJExO8YhsFz809P33BLUnMS4+wmJxKRuqCSIyJ+Z8Wuo2TtPYY1MIDMfu3NjiMidUQlR0T8itv936M496a2okWjMJMTiUhdUckREb8yZ9MhvjlcRHhIEBnXtjM7jojUIZUcEfEb5VUu/rJwJwCPXNOWRg2sJicSkbqkkiMifuPD1bkcKjxFjN3GsCs0CaeIr1PJERG/UFRWyZQlpyfhHJ3WnlBroMmJRKSuqeSIiF94c/keTpyspF10Q37Vq4XZcUTkElDJERGfl19Uxrsr9wEwNr0DQZqEU8Qv6G+6iPi8yf/eSVmlm16tGnF9YozZcUTkElHJERGftrughBnrDgAwQZNwivgVlRwR8WkvLNyO24DrE2NIbh1ldhwRuYRUckTEZ2V/e5yF2/IJsJw+F0dE/ItKjoj4pLMn4by9VzyXxYSbnEhELjWVHBHxSYu/KWDd/hPYggIYfb0m4RTxRyo5IuJzqlxunl9w+ijO/VclEBsRYnIiETGDSo6I+JxPNxxiV0EJkWHBjPhZW7PjiIhJVHJExKeUVbp4adHpSThHXtuOiNBgkxOJiFlUckTEp0xbtR9HURnNI0O5+/JWZscREROp5IiIzyg8WcFrS3cDkHl9e0KCNQmniD9TyRERn/Hasj0UlVXRMTacgT2amx1HREymkiMiPuFQ4SmmrdoPwLj+HQkM0PQNIv5OJUdEfMJL/9pJRZWby9tEcU37pmbHEZF6QCVHRLzedkcRn248CMCE/p00CaeIACo5IuIDJi3YgWHAgK7N6B4faXYcEaknalRyJk6cSO/evQkPDyc6OpqBAweyY8eOamPKysrIyMigcePGNGzYkNtuu438/PxqY3JzcxkwYABhYWFER0czZswYqqqqqo1ZtmwZPXv2xGaz0a5dO6ZNm/a9PFOnTqV169aEhISQkpLC2rVra/JyRMQHrN57jCXbCwgKsPBbTcIpImepUclZvnw5GRkZrF69mkWLFlFZWUm/fv0oLS31jBk9ejRffPEFs2bNYvny5eTl5XHrrbd6trtcLgYMGEBFRQWrVq3i/fffZ9q0aTz11FOeMfv27WPAgAFce+215OTkMGrUKB544AEWLlzoGTNjxgwyMzN5+umn2bBhA927dyc9PZ2CgoKL+XmIiBcxDIOJ303CObhPSxKaNDA5kYjUK8ZFKCgoMABj+fLlhmEYRmFhoREcHGzMmjXLM+abb74xACMrK8swDMP48ssvjYCAAMPhcHjGvP7664bdbjfKy8sNwzCMsWPHGp07d672vQYNGmSkp6d7Hvfp08fIyMjwPHa5XEZcXJwxceLE887vdDoNwHA6nTV41SJSX3y5Oc9oNW6u0enJ+UZ+0Smz44jIJXK+n98XdU6O0+kEICoqCoDs7GwqKytJS0vzjOnYsSMtW7YkKysLgKysLLp27UpMTIxnTHp6OkVFRWzbts0z5ux9nBlzZh8VFRVkZ2dXGxMQEEBaWppnzLmUl5dTVFRUbRER71TpcjNp4elflz9wdRuiwzUJp4hUd8Elx+12M2rUKK688kq6dOkCgMPhwGq1EhkZWW1sTEwMDofDM+bsgnNm+5ltPzamqKiIU6dOcfToUVwu1znHnNnHuUycOJGIiAjPEh8fX/MXLiL1wox1B9h3tJTGDaw81LeN2XFEpB664JKTkZHB1q1b+eSTT2ozT52aMGECTqfTsxw4cMDsSCJyAUrLq5j8710A/Oa6y2hoCzI5kYjURxf0L8PIkSOZO3cuK1asoEWLFp71sbGxVFRUUFhYWO1oTn5+PrGxsZ4x/3sV1Jmrr84e879XZOXn52O32wkNDSUwMJDAwMBzjjmzj3Ox2WzYbLaav2ARqVf+tnIfR0vKadU4jMF9WpodR0TqqRodyTEMg5EjRzJ79myWLFlCQkJCte29evUiODiYxYsXe9bt2LGD3NxcUlNTAUhNTWXLli3VroJatGgRdrudxMREz5iz93FmzJl9WK1WevXqVW2M2+1m8eLFnjEi4puOlZTz5oq9APy2XwesQbrdl4icW42O5GRkZDB9+nTmzJlDeHi45/yXiIgIQkNDiYiIYPjw4WRmZhIVFYXdbufRRx8lNTWVyy+/HIB+/fqRmJjIPffcw6RJk3A4HDzxxBNkZGR4jrKMGDGCKVOmMHbsWO6//36WLFnCzJkzmTdvnidLZmYmQ4cOJTk5mT59+jB58mRKS0sZNmxYbf1sRKQeenXJbkrKq+jaPIIBXZuZHUdE6rOaXLIFnHN57733PGNOnTpl/PrXvzYaNWpkhIWFGbfccotx+PDhavvZv3+/0b9/fyM0NNRo0qSJ8fjjjxuVlZXVxixdutRISkoyrFar0aZNm2rf44xXX33VaNmypWG1Wo0+ffoYq1evrsnL0SXkIl7m26OlRrvfzTNajZtrrNx1xOw4ImKS8/38thiGYZhXscxVVFREREQETqcTu91udhwR+Qm/+Xgjn2/K4+rLmvDB8BSz44iISc7381u/zBYRr7D1kJPPN+UBML5/R5PTiIg3UMkREa/w/ILT0zcMTIqjc1yEyWlExBuo5IhIvfefXUf4z66jWAMDeLyfJuEUkfOjkiMi9ZrbbfDcd5Nw3n15K+KjwkxOJCLeQiVHROq1LzbnsS2viIa2IEb+vJ3ZcUTEi6jkiEi9VV7l4i//Oj0J54iftSGqgdXkRCLiTVRyRKTemr4mlwPHTxEdbuP+qxJ++gkiImdRyRGReqm4rJJXl+wGYFRae8KsmoRTRGpGJUdE6qW3V+zleGkFbZo24I7kFj/9BBGR/6GSIyL1TkFRGW//Zx8AY9M7EhSof6pEpOb0L4eI1DuvLN7FqUoXPVpGkt45xuw4IuKlVHJEpF7Ze6SET9YdAGBC/05YLBaTE4mIt1LJEZF65YWFO3C5DdI6RdMnIcrsOCLixVRyRKTe2JB7gvlbHQRYYEy6JuEUkYujkiMi9YJh/Hf6htt6tqBDbLjJiUTE26nkiEi9sHRHAWv3HccWFMDo69ubHUdEfIBKjoiYzuU2eH7+6ekb7ruyNXGRoSYnEhFfoJIjIqabvfEQO/KLiQgN5tc/0yScIlI7VHJExFRllS5e+m4Szoxr2xIRFmxyIhHxFSo5ImKqv2ftJ89ZRlxECPemtjY7joj4EJUcETGN82QlU5fuAWD09e0JCQ40OZGI+BKVHBExzWvLd+M8VUmHmHBu7alJOEWkdqnkiIgp8gpP8d5X+wEY178DgQGavkFEapdKjoiYYvK/d1JR5aZPQhTXdog2O46I+CCVHBG55HbmF/OP7IMAjO/fUZNwikidUMkRkUtu0oLtuA3o3yWWni0bmR1HRHyUSo6IXFLLdx7h398UEBhg4bfpHcyOIyI+TCVHRC6Z5TuP8PAH6wEY3Ceetk0bmpxIRHxZkNkBRMQ/LNjq4Dcfb6TC5ebaDk15YkCi2ZFExMep5IhInZu98SC/nbUZl9tgQNdmvDwoCWuQDiSLSN1SyRGROjV9TS6//2wLhgG/6tWC527tSlCgCo6I1D2VHBGpM2+v2MufvvwGgKGprXj6ps4E6KZ/InKJqOSISK0zDINXFu9i8r93AfDINW0Zm95B98MRkUtKJUdEapVhGPz5y294+z/7ABiT3oGMa9uZnEpE/JFKjojUGrfb4Ik5W5m+JheAp29KZNiVCSanEhF/pZIjIrWiyuVmzD82M3vjISwWeP7WbtzRO97sWCLix1RyROSilVe5+M3HG1m4LZ+gAAsvD0ripu5xZscSET+nkiMiF+VUhYuHPljPf3YdxRoUwGt39SQtMcbsWCIiKjkicuGKyyoZPm09a/cfJzQ4kHeGJnNluyZmxxIRAVRyROQCnSitYOh7a9l80El4SBDThvWmV6sos2OJiHio5IhIjRUUl3HPO2vZkV9Mo7BgPhieQpfmEWbHEhGppsb3Vl+xYgU33XQTcXFxWCwWPvvss2rb77vvPiwWS7XlhhtuqDbm+PHjDBkyBLvdTmRkJMOHD6ekpKTamM2bN3P11VcTEhJCfHw8kyZN+l6WWbNm0bFjR0JCQujatStffvllTV+OiNTQocJTDHpzNTvyi4kOtzHz4VQVHBGpl2pcckpLS+nevTtTp079wTE33HADhw8f9iwff/xxte1Dhgxh27ZtLFq0iLlz57JixQoeeughz/aioiL69etHq1atyM7O5oUXXuCZZ57hrbfe8oxZtWoVgwcPZvjw4WzcuJGBAwcycOBAtm7dWtOXJCLnad/RUu54I4t9R0tpHhnKrBGpXBYTbnYsEZFzshiGYVzwky0WZs+ezcCBAz3r7rvvPgoLC793hOeMb775hsTERNatW0dycjIACxYs4Be/+AUHDx4kLi6O119/nd///vc4HA6sVisA48eP57PPPmP79u0ADBo0iNLSUubOnevZ9+WXX05SUhJvvPHGeeUvKioiIiICp9OJ3W6/gJ+AiP/Y4Sjm7nfXcKS4nDZNGvDhAynERYaaHUtE/ND5fn7XyVTAy5YtIzo6mg4dOvDII49w7Ngxz7asrCwiIyM9BQcgLS2NgIAA1qxZ4xnTt29fT8EBSE9PZ8eOHZw4ccIzJi0trdr3TU9PJysrqy5ekohf23ywkEFvZXGkuJyOseHMeDhVBUdE6r1aP/H4hhtu4NZbbyUhIYE9e/bwu9/9jv79+5OVlUVgYCAOh4Po6OjqIYKCiIqKwuFwAOBwOEhIqH4r+JiYGM+2Ro0a4XA4POvOHnNmH+dSXl5OeXm553FRUdFFvVYRf7Bu/3GGvbeOkvIqusdH8v6w3kSGWX/6iSIiJqv1knPnnXd6vu7atSvdunWjbdu2LFu2jOuuu662v12NTJw4kWeffdbUDCLe5D+7jvDg39dTVunm8jZRvDO0Nw1tuihTRLxDnfy66mxt2rShSZMm7N69G4DY2FgKCgqqjamqquL48ePExsZ6xuTn51cbc+bxT405s/1cJkyYgNPp9CwHDhy4uBcn4sMWbnMwfNrpgnNNh6ZMG9ZHBUdEvEqdl5yDBw9y7NgxmjVrBkBqaiqFhYVkZ2d7xixZsgS3201KSopnzIoVK6isrPSMWbRoER06dKBRo0aeMYsXL672vRYtWkRqauoPZrHZbNjt9mqLiHzfnJxD/PqjDVS43PTvEstb9yQTEhxodiwRkRqpcckpKSkhJyeHnJwcAPbt20dOTg65ubmUlJQwZswYVq9ezf79+1m8eDE333wz7dq1Iz09HYBOnTpxww038OCDD7J27Vq++uorRo4cyZ133klc3OkJ/e666y6sVivDhw9n27ZtzJgxg1deeYXMzExPjscee4wFCxbw4osvsn37dp555hnWr1/PyJEja+HHIuK/Pl6by6gZObjcBrf2bM6rg3tgDarz/x8SEal9Rg0tXbrUAL63DB061Dh58qTRr18/o2nTpkZwcLDRqlUr48EHHzQcDke1fRw7dswYPHiw0bBhQ8NutxvDhg0ziouLq43ZtGmTcdVVVxk2m81o3ry58dxzz30vy8yZM4327dsbVqvV6Ny5szFv3rwavRan02kAhtPprOmPQcQnvb1ij9Fq3Fyj1bi5xhOztxgul9vsSCIi33O+n98XdZ8cb6f75IicZhgGf128m5f/vROAh3/WhvE3dMRisZicTETk+87381tnEYr4OcMwmDh/O2+t2AvA49e3Z+TP26ngiIjXU8kR8WNut8GTc7by0ZpcAJ68MZHhVyX8xLNERLyDSo6In6pyuRn7j818uvEQFgtMvKUrd/ZpaXYsEZFao5Ij4ofKq1w89nEOC7Y5CAyw8NId3bk5qbnZsUREapVKjoifOVXhYsSH2SzfeQRrYABT7upBv84/fBNNERFvpZIj4keKyyoZ/v561u47TmhwIG/d24urL2tqdiwRkTqhkiPiJwpPVjD0b2vZdNBJuC2I94b1Jrl1lNmxRETqjEqOiB84UlzOPe+uYbujmEZhwfz9/hS6togwO5aISJ1SyRHxcXmFpxjyzhr2HS2labiNjx5IoX1MuNmxRETqnEqOiA/bf7SUIe+s4VDhKZpHhvLRAym0btLA7FgiIpeESo6Ij9qZX8yQd9ZwpLicNk0a8OEDKcRFhpodS0TkklHJEfFBWw46ufdvazhxspKOseF8MDyFpuE2s2OJiFxSKjkiPmb9/uMMe28dxeVVdG8Rwfv39yEyzGp2LBGRS04lR8SHrNx1lAf/vp5TlS76JETx7tBkwkOCzY4lImIKlRwRH/GvbQ5GTt9IhcvNz9o35Y27exFqDTQ7loiIaVRyRHzAnJxDZM7chMttkN45hr8O7oEtSAVHRPybSo6Il/tkbS4TZm/BMODWHs2Z9KtuBAUGmB1LRMR0KjkiXuzdlfv4v7lfAzAkpSX/d3MXAgIsJqcSEakfVHJEvJBhGExZspsXF+0E4KG+bZjQvyMWiwqOiMgZKjkiXsYwDJ5bsJ03l+8FYHRae35zXTsVHBGR/6GSI+JF3G6Dpz7fyoercwF4YkAnHri6jcmpRETqJ5UcES9R5XIz9p+b+XTDISwW+NPArtyV0tLsWCIi9ZZKjogXKCmv4rGPN7J4ewGBARZeuqM7Nyc1NzuWiEi9ppIjUs8dPHGSB95fz3ZHMbagAP46uAfpnWPNjiUiUu+p5IjUY9nfHufhD7I5WlJB03Abb9+bTFJ8pNmxRES8gkqOSD312cZDjP3HZipcbhKb2XlnaDJxkaFmxxIR8RoqOSL1jNtt8PK/d/Lqkt0AXJ8Yw+RBSTSw6a+riEhN6F9NkXrkVIWLx2fl8OUWBwAP/6wN49I76i7GIiIXQCVHpJ7ILyrjwb+vZ/NBJ8GBFv58S1duT443O5aIiNdSyRGpB7YecvLA++txFJXRKCyYN+9Jpk9ClNmxRES8mkqOiMkWbD3M6BmbOFXpol10Q94dmkyrxg3MjiUi4vVUckRMYhgGry3bwwsLdwBw9WVNmDqkJ/aQYJOTiYj4BpUcEROUV7mY8OkWPt1wCIChqa148sZEggIDTE4mIuI7VHJELrFjJeU8/EE26789QWCAhWduSuSe1NZmxxIR8TkqOSKX0M78Yu6fto6DJ04RHhLE1Lt60rd9U7NjiYj4JJUckUtk2Y4CRk7fSEl5Fa0ah/Hu0GTaRYebHUtExGep5IjUMcMwmLZqP/8392vcBvRJiOLNu3vRqIHV7GgiIj5NJUekDlW63Dzz+TY+WpMLwB3JLfjjwK5Yg3SCsYhIXVPJEakjzpOV/Hp6Nl/tPobFAuNv6MhDfdtgsWiKBhGRS0ElR6QO7DtayvD317H3SClh1kBeubMH1yfGmB1LRMSvqOSI1LKsPccY8WE2zlOVxEWE8M7Q3iTG2c2OJSLid1RyRGrRJ2tzeeKzrVS5DbrHR/L2vb2IDg8xO5aIiF+q8dmPK1as4KabbiIuLg6LxcJnn31WbbthGDz11FM0a9aM0NBQ0tLS2LVrV7Uxx48fZ8iQIdjtdiIjIxk+fDglJSXVxmzevJmrr76akJAQ4uPjmTRp0veyzJo1i44dOxISEkLXrl358ssva/pyRGqFy23wp3lfM/7TLVS5DW7qHseMhy5XwRERMVGNS05paSndu3dn6tSp59w+adIk/vrXv/LGG2+wZs0aGjRoQHp6OmVlZZ4xQ4YMYdu2bSxatIi5c+eyYsUKHnroIc/2oqIi+vXrR6tWrcjOzuaFF17gmWee4a233vKMWbVqFYMHD2b48OFs3LiRgQMHMnDgQLZu3VrTlyRyUUrKq3jo7+t5+z/7ABiVdhl/vTOJkOBAk5OJiPg54yIAxuzZsz2P3W63ERsba7zwwguedYWFhYbNZjM+/vhjwzAM4+uvvzYAY926dZ4x8+fPNywWi3Ho0CHDMAzjtddeMxo1amSUl5d7xowbN87o0KGD5/Edd9xhDBgwoFqelJQU4+GHHz7v/E6n0wAMp9N53s8ROduB46VG+svLjVbj5hrtf/+l8XnOIbMjiYj4vPP9/K7Vm3Xs27cPh8NBWlqaZ11ERAQpKSlkZWUBkJWVRWRkJMnJyZ4xaWlpBAQEsGbNGs+Yvn37YrX+92Zp6enp7NixgxMnTnjGnP19zow5833Opby8nKKiomqLyIXakHuCgVO/YrujmCYNbXzy0OXc1D3O7FgiIvKdWi05DocDgJiY6pfKxsTEeLY5HA6io6OrbQ8KCiIqKqramHPt4+zv8UNjzmw/l4kTJxIREeFZ4uPja/oSRQCYk3OIO99azdGSCjo1s/P5yCvp0bKR2bFEROQsfnXb1QkTJuB0Oj3LgQMHzI4kXsbtNnjpXzt47JMcKqrcXJ8Ywz9GpBIXGWp2NBER+R+1egl5bGwsAPn5+TRr1syzPj8/n6SkJM+YgoKCas+rqqri+PHjnufHxsaSn59fbcyZxz815sz2c7HZbNhstgt4ZSJwqsLFb2dtYt6WwwA8/LM2jEvvSECA7mAsIlIf1eqRnISEBGJjY1m8eLFnXVFREWvWrCE1NRWA1NRUCgsLyc7O9oxZsmQJbreblJQUz5gVK1ZQWVnpGbNo0SI6dOhAo0aNPGPO/j5nxpz5PiK1qaCojEFvZTFvy2GCAy1M+lU3JvTvpIIjIlKP1bjklJSUkJOTQ05ODnD6ZOOcnBxyc3OxWCyMGjWKP/7xj3z++eds2bKFe++9l7i4OAYOHAhAp06duOGGG3jwwQdZu3YtX331FSNHjuTOO+8kLu70SZt33XUXVquV4cOHs23bNmbMmMErr7xCZmamJ8djjz3GggULePHFF9m+fTvPPPMM69evZ+TIkRf/UxE5y9ZDTn455Ss2H3TSKCyYD4encEeyzucSEan3anrZ1tKlSw3ge8vQoUMNwzh9GfmTTz5pxMTEGDabzbjuuuuMHTt2VNvHsWPHjMGDBxsNGzY07Ha7MWzYMKO4uLjamE2bNhlXXXWVYbPZjObNmxvPPffc97LMnDnTaN++vWG1Wo3OnTsb8+bNq9Fr0SXk8lPmbzlsdHxivtFq3Fzj539Zauw/WmJ2JBERv3e+n98WwzAMEzuWqYqKioiIiMDpdGK3a24h+S/DMHhj+V6eX7AdgKsva8KUu3oSERpscjIRETnfz2/NXSXyP8qrXPzu0638c8NBAO5NbcVTNyYSFOhXFyOKiHg9lRyRsxwrKWfEh9ms23+CwAALT9+UyL2prc2OJSIiF0AlR+Q7u/KLuf/9dRw4fopwWxBTh/Skb/umZscSEZELpJIjAizbUcCj0zdSXF5Fy6gw/nZfMu2iw82OJSIiF0ElR/yaYRi8v2o/f5j7NW4D+iRE8cbdvYhqYP3pJ4uISL2mkiN+q9Ll5tkvtvHh6lwAbu/Vgj/d0hVrkE4wFhHxBSo54pecpyrJ+GgDK3cfxWKB8Td05KG+bbBYdAdjERFfoZIjfmf/0VLuf38de4+UEmYNZPKgJPp1/uE5z0RExDup5IhfydpzjEc+yqbwZCVxESG8PTSZznERZscSEZE6oJIjfmPGulx+P3srVW6D7vGRvH1vL6LDQ8yOJSIidUQlR3yey23w/ILtvLViLwA3dmvGX27vTkhwoMnJRESkLqnkiE8rr3Ix6pMc5m91APDYdZcxKu0ynWAsIuIHVHLEZ52sqOLhD7L5z66jWAMD+Msd3fll9zizY4mIyCWikiM+yXmqkvunrSP72xOEWQN5+95krmzXxOxYIiJyCankiM85WlLOve+u5evDRdhDgph2fx96tmxkdiwREbnEVHLEpxwqPMU976xh79FSmjS08cHwPnRqZjc7loiImEAlR3zG3iMl3P3OGvKcZTSPDOXDB1JIaNLA7FgiImISlRzxCV/nFXHv39ZwtKSCNk0b8OHwFOIiQ82OJSIiJlLJEa+X/e1xhr23jqKyKhKb2fn78D40aWgzO5aIiJhMJUe82spdR3nw7+s5VekiuVUj3r2vNxGhwWbHEhGRekAlR7zWgq0OfvPxRipcbq6+rAlv3tOLMKv+SIuIyGn6RBCv9M/sg4z952ZcboP+XWKZfGcStiBN0yAiIv+lkiNe5/1V+3n6820A3N6rBRNv7UpQYIDJqUREpL5RyRGvYRgGU5fu5i//2gnAsCtb8+SARAICNA+ViIh8n0qOeAXDMJg4/78ziY9Ku4zHrtNEmyIi8sNUcqTec7kNnvhsCx+vPQDAkzcmMvyqBJNTiYhIfaeSI/VapcvN6Bk5zN18mAALPHdrN+7oHW92LBER8QIqOVJvlVW6+PVHG1iyvYDgQAuTB/VgQLdmZscSEREvoZIj9VJxWSXD31/P2n3HCQkO4I27e3FNh2izY4mIiBdRyZF653hpBfe9t5bNB52E24L427De9G4dZXYsERHxMio5Uq84nGXc8+4adhWUENXAyt/v70OX5hFmxxIRES+kkiP1Ru6xkwx5dzUHjp8i1h7Chw+k0C66odmxRETES6nkSL2wM7+Yu99ZQ0FxOa0bh/HB8BTio8LMjiUiIl5MJUdMt+lAIUPfW0vhyUo6xITzwQN9iA4PMTuWiIh4OZUcMVXWnmM88P46SitcJMVHMm1YbyLDrGbHEhERH6CSI6ZZsj2fRz7cQHmVmyvaNuate5NpaNMfSRERqR36RBFTzMk5xOMzN1HlNkjrFMOUu3oQEhxodiwREfEhKjlyyU1fk8vvP9uCYcDApDheuL07wYEBZscSEREfo5Ijl9Sby/cwcf52AO6+vCV/+GUXAgI0k7iIiNQ+lRy5JAzD4C//2sHUpXsA+PU1bRmT3gGLRQVHRETqhkqO1Dm32+CZL7bx96xvARh3Q0ceuaatyalERMTX1fqJEM888wwWi6Xa0rFjR8/2srIyMjIyaNy4MQ0bNuS2224jPz+/2j5yc3MZMGAAYWFhREdHM2bMGKqqqqqNWbZsGT179sRms9GuXTumTZtW2y9FakGVy83jszbx96xvsVjgjwO7qOCIiMglUSdne3bu3JnDhw97lpUrV3q2jR49mi+++IJZs2axfPly8vLyuPXWWz3bXS4XAwYMoKKiglWrVvH+++8zbdo0nnrqKc+Yffv2MWDAAK699lpycnIYNWoUDzzwAAsXLqyLlyMXqKzSxSMfbWD2xkMEBliYPCiJuy9vZXYsERHxExbDMIza3OEzzzzDZ599Rk5Ozve2OZ1OmjZtyvTp0/nVr34FwPbt2+nUqRNZWVlcfvnlzJ8/nxtvvJG8vDxiYmIAeOONNxg3bhxHjhzBarUybtw45s2bx9atWz37vvPOOyksLGTBggXnnbWoqIiIiAicTid2u/3iXrhUU1pexUMfrOer3cewBgXw2l09SUuMMTuWiIj4gPP9/K6TIzm7du0iLi6ONm3aMGTIEHJzcwHIzs6msrKStLQ0z9iOHTvSsmVLsrKyAMjKyqJr166eggOQnp5OUVER27Zt84w5ex9nxpzZh5jLebKSu99dw1e7j9HAGsi0Yb1VcERE5JKr9ROPU1JSmDZtGh06dODw4cM8++yzXH311WzduhWHw4HVaiUyMrLac2JiYnA4HAA4HI5qBefM9jPbfmxMUVERp06dIjQ09JzZysvLKS8v9zwuKiq6qNcq31dQXMa9765lu6OYyLBgpg3rQ1J8pNmxRETED9V6yenfv7/n627dupGSkkKrVq2YOXPmD5aPS2XixIk8++yzpmbwZQdPnOTud9aw/9hJmobb+HB4Ch1iw82OJSIifqrObzMbGRlJ+/bt2b17N7GxsVRUVFBYWFhtTH5+PrGxsQDExsZ+72qrM49/aozdbv/RIjVhwgScTqdnOXDgwMW+PPnOniMl3P5GFvuPnaRFo1D+MSJVBUdERExV5yWnpKSEPXv20KxZM3r16kVwcDCLFy/2bN+xYwe5ubmkpqYCkJqaypYtWygoKPCMWbRoEXa7ncTERM+Ys/dxZsyZffwQm82G3W6vtsjF23rIyR1vZHHYWUa76Ib8Y8QVtGrcwOxYIiLi52q95Pz2t79l+fLl7N+/n1WrVnHLLbcQGBjI4MGDiYiIYPjw4WRmZrJ06VKys7MZNmwYqampXH755QD069ePxMRE7rnnHjZt2sTChQt54oknyMjIwGazATBixAj27t3L2LFj2b59O6+99hozZ85k9OjRtf1y5Ces33+cwW+v5lhpBV2bRzDz4VRiI0LMjiUiIlL75+QcPHiQwYMHc+zYMZo2bcpVV13F6tWradq0KQAvv/wyAQEB3HbbbZSXl5Oens5rr73meX5gYCBz587lkUceITU1lQYNGjB06FD+8Ic/eMYkJCQwb948Ro8ezSuvvEKLFi145513SE9Pr+2XIz9i+c4jPPzBesoq3fRpHcU79yVjDwk2O5aIiAhQB/fJ8Sa6T86Fm7/lML/5ZCOVLoNrOjTl9SG9CLUGmh1LRET8wPl+fmvuKqmxWesPMO6fm3EbMKBbM16+IwlrUJ2f3iUiIlIjKjlSI39buY8/zP0agDt7x/OnW7oSGKCZxEVEpP5RyZHzYhgGf128m5f/vROAB69O4He/6ITFooIjIiL1k0qO/CTDMPjjvG94d+U+AB6/vj0jf95OBUdEROo1lRz5US63we8+3cKM9advnPjMTYncd2WCyalERER+mkqO/KCKKjejZ+Qwb8thAiww6Vfd+VWvFmbHEhEROS8qOXJOB46f5PGZm1i7/zjWwAD+OjiJG7o0MzuWiIjIeVPJkWoMw2DW+oP8Ye7XlJRXEWYN5M17enH1ZU3NjiYiIlIjKjnicaS4nAmfbuHf35ye/DS5VSNevKO75qESERGvpJIjACzY6uB3s7dwvLQCa2AAmf3a8+DVbXQPHBER8VoqOX6uqKySZz7fxqcbDgHQMTaclwcl0amZprkQERHvppLjx77afZQxszaR5ywjwAIjftaWx9IuwxakOahERMT7qeT4obJKF88v2M57X+0HoFXjMF68vTvJraPMDSYiIlKLVHL8zKYDhWTOzGHPkVIAhqS05He/6EQDm/4oiIiIb9Enm5+odLmZsmQ3U5buxuU2iA638fyvunFth2izo4mIiNQJlRw/sLugmNEzNrHlkBOAG7s1448DuxAZZjU5mYiISN1RyfFhbrfBtFX7eX7Bdsqr3ESEBvN/A7vwy+5xZkcTERGpcyo5PupQ4Sl+O3MTWXuPAdC3fVMm3daN2IgQk5OJiIhcGio5PsYwDP654RDPfr6N4vIqQoMD+f2ATgxJaYnFohv7iYiI/1DJ8SFHS8r53adb+NfXp6dl6NkykpfuSKJ1E03LICIi/kclx0f8a9vpaRmOllQQHGhhVFp7Hu7bhqDAALOjiYiImEIlx8sVl1Xyhy++Zlb2QQA6xITz0qDudI6LMDmZiIiIuVRyvFjWnmP8dtYmDhWewmKBh/q2IfP69pqWQUREBJUcr1RW6eKFhTt4d+U+AOKjQnnx9iT6JGhaBhERkTNUcrzMloNOMmfmsKugBIDBfeL5/YBEGmpaBhERkWr0yeglqlxuXlu2h78u3kWV26BJQxuTftWVn3eMMTuaiIhIvaSS4wX2HCkhc+YmNh0oBOAXXWP548CuRDXQtAwiIiI/RCWnHnO7DT5Y/S0T539DWaUbe0iQZ1oG3dhPRETkx6nk1FN5hacY+4/NrNx9FICr2jXhhdu70Swi1ORkIiIi3kElp54xDIM5OXk8OWcrxWVVhAQH8LtfdOLulFYEBOjojYiIyPlSyalHjpdW8MRnW/hyiwOApPhIXrqjO22aNjQ5mYiIiPdRyaknFn+Tz7h/buFoSTlBARZGpV3GiJ+11bQMIiIiF0glx2Ql5VX8ce7XfLLuAACXRTfk5UFJdGmuaRlEREQuhkqOidbuO87js3I4cPz0tAwPXJXA4/06EBKsaRlEREQulkqOCcoqXby8aCdv/WcvhgHNI0N58Y7uXN6msdnRREREfIZKziW2Lc9J5oxN7MgvBmBQcjxP3NiJ8JBgk5OJiIj4FpWcS6TK5ebNFXuZ/O+dVLoMmjS0MvHWblyfqGkZRERE6oJKziWw72gpj8/MYUNuIQDpnWP48y1dadzQZm4wERERH6aSU4cMw+DDNbn8ed43nKp0EW4L4tmbO3NLj+aalkFERKSOqeTUEYezjLH/3MyKnUcAuKJtY164vTvNIzUtg4iIyKWgklMH5uQc4snPtlJUVoUtKIDx/TsyNLW1pmUQERG5hFRyall+URnj/rmZsko33VpE8NIdSbSL1rQMIiIil5rXzxkwdepUWrduTUhICCkpKaxdu9bUPDH2EH4/IJHRae355yNXqOCIiIiYxKtLzowZM8jMzOTpp59mw4YNdO/enfT0dAoKCkzNdc/lrXgs7TKCNe+UiIiIabz6U/ill17iwQcfZNiwYSQmJvLGG28QFhbG3/72N7OjiYiIiMm8tuRUVFSQnZ1NWlqaZ11AQABpaWlkZWWd8znl5eUUFRVVW0RERMQ3eW3JOXr0KC6Xi5iY6ncMjomJweFwnPM5EydOJCIiwrPEx8dfiqgiIiJiAq8tORdiwoQJOJ1Oz3LgwAGzI4mIiEgd8dpLyJs0aUJgYCD5+fnV1ufn5xMbG3vO59hsNmw2TaUgIiLiD7z2SI7VaqVXr14sXrzYs87tdrN48WJSU1NNTCYiIiL1gdceyQHIzMxk6NChJCcn06dPHyZPnkxpaSnDhg0zO5qIiIiYzKtLzqBBgzhy5AhPPfUUDoeDpKQkFixY8L2TkUVERMT/WAzDMMwOYZaioiIiIiJwOp3Y7Xaz44iIiMh5ON/Pb689J0dERETkx6jkiIiIiE9SyRERERGfpJIjIiIiPsmrr666WGfOudYcViIiIt7jzOf2T1075dclp7i4GEBzWImIiHih4uJiIiIifnC7X19C7na7ycvLIzw8HIvFUmv7LSoqIj4+ngMHDujS9HpA70f9o/ekftH7Ub/o/fhphmFQXFxMXFwcAQE/fOaNXx/JCQgIoEWLFnW2f7vdrj+g9Yjej/pH70n9ovejftH78eN+7AjOGTrxWERERHySSo6IiIj4JJWcOmCz2Xj66aex2WxmRxH0ftRHek/qF70f9Yvej9rj1ycei4iIiO/SkRwRERHxSSo5IiIi4pNUckRERMQnqeSIiIiIT1LJqQNTp06ldevWhISEkJKSwtq1a82O5JcmTpxI7969CQ8PJzo6moEDB7Jjxw6zY8l3nnvuOSwWC6NGjTI7it86dOgQd999N40bNyY0NJSuXbuyfv16s2P5LZfLxZNPPklCQgKhoaG0bduW//u///vJ+Znkh6nk1LIZM2aQmZnJ008/zYYNG+jevTvp6ekUFBSYHc3vLF++nIyMDFavXs2iRYuorKykX79+lJaWmh3N761bt44333yTbt26mR3Fb504cYIrr7yS4OBg5s+fz9dff82LL75Io0aNzI7mt55//nlef/11pkyZwjfffMPzzz/PpEmTePXVV82O5rV0CXktS0lJoXfv3kyZMgU4PT9WfHw8jz76KOPHjzc5nX87cuQI0dHRLF++nL59+5odx2+VlJTQs2dPXnvtNf74xz+SlJTE5MmTzY7ld8aPH89XX33Ff/7zH7OjyHduvPFGYmJiePfddz3rbrvtNkJDQ/nwww9NTOa9dCSnFlVUVJCdnU1aWppnXUBAAGlpaWRlZZmYTACcTicAUVFRJifxbxkZGQwYMKDa3xO59D7//HOSk5O5/fbbiY6OpkePHrz99ttmx/JrV1xxBYsXL2bnzp0AbNq0iZUrV9K/f3+Tk3kvv56gs7YdPXoUl8tFTExMtfUxMTFs377dpFQCp4+ojRo1iiuvvJIuXbqYHcdvffLJJ2zYsIF169aZHcXv7d27l9dff53MzEx+97vfsW7dOn7zm99gtVoZOnSo2fH80vjx4ykqKqJjx44EBgbicrn405/+xJAhQ8yO5rVUcsQvZGRksHXrVlauXGl2FL914MABHnvsMRYtWkRISIjZcfye2+0mOTmZP//5zwD06NGDrVu38sYbb6jkmGTmzJl89NFHTJ8+nc6dO5OTk8OoUaOIi4vTe3KBVHJqUZMmTQgMDCQ/P7/a+vz8fGJjY01KJSNHjmTu3LmsWLGCFi1amB3Hb2VnZ1NQUEDPnj0961wuFytWrGDKlCmUl5cTGBhoYkL/0qxZMxITE6ut69SpE//85z9NSiRjxoxh/Pjx3HnnnQB07dqVb7/9lokTJ6rkXCCdk1OLrFYrvXr1YvHixZ51brebxYsXk5qaamIy/2QYBiNHjmT27NksWbKEhIQEsyP5teuuu44tW7aQk5PjWZKTkxkyZAg5OTkqOJfYlVde+b1bKuzcuZNWrVqZlEhOnjxJQED1j+XAwEDcbrdJibyfjuTUsszMTIYOHUpycjJ9+vRh8uTJlJaWMmzYMLOj+Z2MjAymT5/OnDlzCA8Px+FwABAREUFoaKjJ6fxPeHj4986HatCgAY0bN9Z5UiYYPXo0V1xxBX/+85+54447WLt2LW+99RZvvfWW2dH81k033cSf/vQnWrZsSefOndm4cSMvvfQS999/v9nRvJYuIa8DU6ZM4YUXXsDhcJCUlMRf//pXUlJSzI7ldywWyznXv/fee9x3332XNoyc0zXXXKNLyE00d+5cJkyYwK5du0hISCAzM5MHH3zQ7Fh+q7i4mCeffJLZs2dTUFBAXFwcgwcP5qmnnsJqtZodzyup5IiIiIhP0jk5IiIi4pNUckRERMQnqeSIiIiIT1LJEREREZ+kkiMiIiI+SSVHREREfJJKjoiIiPgklRwRERHxSSo5IiIi4pNUckRERMQnqeSIiIiIT1LJEREREZ/0/+aaOIkwryV0AAAAAElFTkSuQmCC"
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.plot([\n",
|
||
" 432,\n",
|
||
" 3717,\n",
|
||
" 8199,\n",
|
||
" 12209,\n",
|
||
" 16745,\n",
|
||
" 25579,\n",
|
||
" 26734,\n",
|
||
" 30528,\n",
|
||
" 30770,\n",
|
||
" 32442,\n",
|
||
"])"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 93,
|
||
"outputs": [],
|
||
"source": [
|
||
"h1, h2 = (list(zip(*[[406, 1000],\n",
|
||
"[3466, 2000],\n",
|
||
"[7719, 3000],\n",
|
||
"[11442, 4000],\n",
|
||
"[15635, 5000],\n",
|
||
"[21632, 6000],\n",
|
||
"[24696, 7000],\n",
|
||
"[28303, 8000],\n",
|
||
"[27905, 9000],\n",
|
||
"[28933, 10000],\n",
|
||
"[31787, 11000],\n",
|
||
"[36140, 12000],\n",
|
||
"[41352, 13000],\n",
|
||
"[43140, 14000],\n",
|
||
"[46663, 15000],\n",
|
||
"[48157, 16000],\n",
|
||
"[57204, 17000],\n",
|
||
"[65092, 18000],\n",
|
||
"[68475, 19000],\n",
|
||
"[78264, 20000],\n",
|
||
"[81744, 21000],\n",
|
||
"[88951, 22000],\n",
|
||
"[101656, 23000],\n",
|
||
"[118312, 24000],\n",
|
||
"[117773, 25000],\n",
|
||
"[129479, 26000],\n",
|
||
"[134337, 27000],\n",
|
||
"[137298, 28000],\n",
|
||
"[151589, 29000],\n",
|
||
"[162733, 30000],\n",
|
||
"[157718, 31000],\n",
|
||
"[170786, 32000],\n",
|
||
"[169535, 33000],\n",
|
||
"[177893, 34000],\n",
|
||
"[179300, 35000],\n",
|
||
"[175627, 36000],\n",
|
||
"[202971, 37000],\n",
|
||
"[232027, 38000],\n",
|
||
"[231474, 39000],\n",
|
||
"[232526, 40000],\n",
|
||
"[255812, 41000],\n",
|
||
"[264559, 42000],\n",
|
||
"[270349, 43000]])))"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 94,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "[<matplotlib.lines.Line2D at 0x29c344220>]"
|
||
},
|
||
"execution_count": 94,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLL0lEQVR4nO3de1xUdf4/8NcMMMN1uMhl5K6ioKh4hdjSLpJYbOXmlmtWVnbRtM1szWxbbfvu/mi1ttua1dZqu9tmuptdvBXhbVVERRFUxBsIAgNym+E6w8x8fn8QZx2vgMAZmNfz8ZiHzjnvOfMeTjivzjmf81EIIQSIiIiIHJBS7gaIiIiI5MIgRERERA6LQYiIiIgcFoMQEREROSwGISIiInJYDEJERETksBiEiIiIyGExCBEREZHDcpa7AXtmtVpRWloKLy8vKBQKudshIiKidhBCoK6uDsHBwVAqr33Mh0HoGkpLSxEWFiZ3G0RERNQJxcXFCA0NvWYNg9A1eHl5AWj9QWo0Gpm7ISIiovYwGAwICwuTvsevhUHoGtpOh2k0GgYhIiKiXqY9l7XwYmkiIiJyWAxCRERE5LAYhIiIiMhhMQgRERGRw2IQIiIiIofFIEREREQOi0GIiIiIHBaDEBERETksBiEiIiJyWAxCRERE5LAYhIiIiMhhMQgRERGRw2IQIiIioh7XYDRj6TdH8a/MIln74OzzRERE1KMyz1Zh0b9zUFTdCE+1M1JG9Ie3u4ssvTAIERERUY9oMlmw/PsTWL2nEAAQ4uOGP00bKVsIAhiEiIiIqAccKKzGovVHUFjVCACYER+GV+4eCi9X+UIQwCBERERE3ai5xYI3v8/Hp3sKIASg1bjiT78ciVuHBMjdGgAGISIiIuomh4pq8Jt1R3C2sgEA8MDYULz682HwdpP3KNDFGISIiIioSzW3WPD2jyfx111nYRVAoJcab0wbgTtiguRu7TIMQkRERNRlcs7XYuG6IzhdUQ8AuH90CJbdEyvrBdHXwiBEREREXWLv6Uo8vuYAjGYr/D3VSL1/BO4cZn9HgS7GIEREREQ3bN/ZKjzxWWsIunVIAN6ZPgq+Hiq527ouBiEiIiK6IfsLqvH46gNobrHitugAfPTIWKidneRuq104xQYRERF12sHCajy2ej+aWiyYMNgfHz7ce0IQwCBEREREnXSoqAaPrT6ARpMFN0f1w18fHQdXl94TggAGISIiIuqE7OJazPp0P+qNZtw00A+fPDq+14UggEGIiIiIOij3vB6PfJqJOqMZ8QP88LfHxsNN1ftCEMAgRERERB1wtESPhz/NRF2zGeMifLH6sfFwV/XesVcMQkRERNQux0sNePjTTOibWjAm3AdrnoiHh7r3hiCAQYiIiIja4YTOgJmf7ENtYwtGhfngsyfi4dnLQxDAIERERETXcbqiDjP/momaxhaMDPXGZ0/Ew8vVPqfM6CgGISIiIrqmVzYcRVWDCcNDNPjHEwl2NXv8jWIQIiIioqsqqmrE/oJqKBTAR4+Ms9vJUzuLQYiIiIiu6j+HzgMAbonyR4iPm8zddD0GISIiIroiq1Xgq8OtQej+MSEyd9M9OhSEUlNTMX78eHh5eSEwMBBTp05Ffn6+Tc1tt90GhUJh85gzZ45NTVFREVJSUuDu7o7AwEAsWrQIZrPZpmbHjh0YM2YM1Go1oqKisGbNmsv6WblyJSIjI+Hq6oqEhATs37/fZn1zczPmzZuHfv36wdPTE9OmTUN5eXlHPjIREZHDOlBYjeLqJnionJAcq5W7nW7RoSC0c+dOzJs3D/v27UNaWhpaWlowefJkNDQ02NQ99dRTKCsrkx7Lly+X1lksFqSkpMBkMmHv3r347LPPsGbNGixdulSqKSgoQEpKCm6//XZkZ2djwYIFePLJJ/H9999LNV9++SUWLlyIZcuW4dChQ4iLi0NycjIqKiqkmhdeeAHfffcd1q9fj507d6K0tBT3339/h39IREREjuirQyUAgLtH9O/VN028JnEDKioqBACxc+dOadmtt94qnn/++au+ZvPmzUKpVAqdTictW7VqldBoNMJoNAohhHjppZdEbGyszeumT58ukpOTpefx8fFi3rx50nOLxSKCg4NFamqqEEKI2tpa4eLiItavXy/V5OXlCQAiIyOjXZ9Pr9cLAEKv17ernoiIqK9oNJpF7NKtImLxRpFxplLudjqkI9/fN3SNkF6vBwD4+fnZLP/888/h7++P4cOHY8mSJWhsbJTWZWRkYMSIEQgKCpKWJScnw2Aw4NixY1JNUlKSzTaTk5ORkZEBADCZTMjKyrKpUSqVSEpKkmqysrLQ0tJiUxMTE4Pw8HCp5lJGoxEGg8HmQURE5Ih+OK5DvdGMUF83xEf6Xf8FvVSnj3NZrVYsWLAAN998M4YPHy4tf+ihhxAREYHg4GDk5ORg8eLFyM/Px1dffQUA0Ol0NiEIgPRcp9Nds8ZgMKCpqQk1NTWwWCxXrDlx4oS0DZVKBR8fn8tq2t7nUqmpqfj973/fwZ8EERFR3/PvrLaLpEOhVCpk7qb7dDoIzZs3D0ePHsXu3bttlj/99NPS30eMGIH+/ftj0qRJOHPmDAYNGtT5TnvAkiVLsHDhQum5wWBAWFiYjB0RERH1PJ2+GXtOVwIApvXR0WJtOnVqbP78+di4cSO2b9+O0NDQa9YmJCQAAE6fPg0A0Gq1l43canuu1WqvWaPRaODm5gZ/f384OTldsebibZhMJtTW1l615lJqtRoajcbmQURE5Gg2HC6BVQDjInwR0c9D7na6VYeCkBAC8+fPx4YNG7Bt2zYMGDDguq/Jzs4GAPTv3x8AkJiYiNzcXJvRXWlpadBoNBg2bJhUk56ebrOdtLQ0JCYmAgBUKhXGjh1rU2O1WpGeni7VjB07Fi4uLjY1+fn5KCoqkmqIiIjIlhACX/10E8VpY699sKNP6MhV2HPnzhXe3t5ix44doqysTHo0NjYKIYQ4ffq0eP3118XBgwdFQUGB+Oabb8TAgQPFxIkTpW2YzWYxfPhwMXnyZJGdnS22bt0qAgICxJIlS6Sas2fPCnd3d7Fo0SKRl5cnVq5cKZycnMTWrVulmrVr1wq1Wi3WrFkjjh8/Lp5++mnh4+NjMxptzpw5Ijw8XGzbtk0cPHhQJCYmisTExHZ/Xo4aIyIiR3OkuEZELN4ohvx2s9A3meRup1M68v3doSAE4IqP1atXCyGEKCoqEhMnThR+fn5CrVaLqKgosWjRossaKSwsFHfddZdwc3MT/v7+4sUXXxQtLS02Ndu3bxejRo0SKpVKDBw4UHqPi73//vsiPDxcqFQqER8fL/bt22ezvqmpSTz77LPC19dXuLu7i1/84heirKys3Z+XQYiIiBzN0q9zRcTijWL+vw7J3UqndeT7WyGEEHIdjbJ3BoMB3t7e0Ov1vF6IiIj6PJPZioT/9yNqGluw5vHxuC06UO6WOqUj39+ca4yIiIgAANtOVKCmsQWBXmrcEuUvdzs9gkGIiIiIAPxvpvmpo0Pg7OQYEcExPiURERFdU3WDCdtPtI7onjbGAUaL/YRBiIiIiPBtdgnMVoHhIRpEa73kbqfHMAgRERER/vPTTPOOdDQIYBAiIiJyeCfL65BbooezUoF744LlbqdHMQgRERE5uP/8NMHq7TGB6OeplrmbnsUgRERE5MDMFis2HHbM02IAgxAREZFD23OmChV1Rvi4u+D2mAC52+lxDEJEREQOrO202L1xwVA7O8ncTc9jECIiInJQhuYWfH9MB8AxT4sBDEJEREQOa3NOGYxmK6ICPTEy1FvudmTBIEREROSg2qbUmDYmFAqFQuZu5OEsdwNERETUM8wWK3SGZpTUNOHMhQYcKKyBQgH8YnSI3K3JhkGIiIjIzr35fT62HC2Dl6sLNG4u8HZzgcbVufVP6bkLNG7O0Li6oK7ZjJLaRpTUNOF8TRPO1zahpKYJOkMzLFZhs+1bovyh9XaV6ZPJj0GIiIjIjtU0mPDBjtO4JL90mouTAsE+bgjxcUO4nzuemjiwazbcSzEIERER2bGdJy/AKoCoQE+8lBwNQ7MZ+qYWGJpaWv9sbv27ockMQ3PrMg+1M0J83BDq64YQXzfp76G+7gjwVEOpdMzrga6EQYiIiMiOpZ+oAABMidVicqxW5m76Ho4aIyIislMtFit25rcGoTuGBsrcTd/EIERERGSnss7VwNBsRj8PFeJCfeRup09iECIiIrJT2346LXZbdCCceF1Pt2AQIiIislPpeeUAgEk8LdZtGISIiIjsUGFlA85caICzUoEJg/3lbqfPYhAiIiKyQ22nxRIG+sHL1UXmbvouBiEiIiI71BaE7ogJkrmTvo1BiIiIyM7UNbcgs6AKADAphtcHdScGISIiIjuz+1QlWiwCAwM8EOnvIXc7fRqDEBERkZ1pu5s0jwZ1PwYhIiIiO2K1Cmzn9UE9hkGIiIjIjhw5X4uqBhO8XJ0xLtJX7nb6PAYhIiIiO9I2WuzWIQFwceLXdHfjT5iIiMiOpOf9dH0Q7ybdIxiEiIiI7ESZvgnHywxQKoBbhzAI9QQGISIiIjvRdlpsTLgv/DxUMnfjGBiEiIiI7MS2n06L3cHTYj2GQYiIiMgONJks2H26EgAwicPmewyDEBERkR3IOFsJo9mKEB83DAnylLsdh8EgREREZAcuHi2mUChk7sZxMAgRERHJTAhx0WzzvD6oJzEIERERySyvrA5l+ma4uTjhpoH95G7HoTAIERERyWzbiXIAwM1R/nB1cZK5G8fCIERERCQzabZ5DpvvcQxCREREMqqsNyK7uBYAcHs0g1BPYxAiIiKS0fYTFRACGB6igdbbVe52HA6DEBERkYz+N1qMN1GUA4MQERGRTExmK3advAAAmMRh87JgECIiIpLJ/oJqNJgs8PdUY0SIt9ztOCQGISIiIpmk/zRs/o6YACiVvJu0HBiEiIiIZCCEkKbV4PVB8mEQIiIiksGZCw0oqm6EykmJWwb7y92Ow2IQIiIikkHb3aQTBvrBU+0sczeOq0NBKDU1FePHj4eXlxcCAwMxdepU5Ofn29Q0Nzdj3rx56NevHzw9PTFt2jSUl5fb1BQVFSElJQXu7u4IDAzEokWLYDabbWp27NiBMWPGQK1WIyoqCmvWrLmsn5UrVyIyMhKurq5ISEjA/v37O9wLERGRHH48/tPdpDlaTFYdCkI7d+7EvHnzsG/fPqSlpaGlpQWTJ09GQ0ODVPPCCy/gu+++w/r167Fz506Ulpbi/vvvl9ZbLBakpKTAZDJh7969+Oyzz7BmzRosXbpUqikoKEBKSgpuv/12ZGdnY8GCBXjyySfx/fffSzVffvklFi5ciGXLluHQoUOIi4tDcnIyKioq2t0LERGRHCrrjThwrhoAcGesVuZuHJy4ARUVFQKA2LlzpxBCiNraWuHi4iLWr18v1eTl5QkAIiMjQwghxObNm4VSqRQ6nU6qWbVqldBoNMJoNAohhHjppZdEbGyszXtNnz5dJCcnS8/j4+PFvHnzpOcWi0UEBweL1NTUdvdyPXq9XgAQer2+XfVERETt8UXmORGxeKP4+Xv/lbuVPqkj3983dI2QXq8HAPj5+QEAsrKy0NLSgqSkJKkmJiYG4eHhyMjIAABkZGRgxIgRCAr63xXyycnJMBgMOHbsmFRz8Tbaatq2YTKZkJWVZVOjVCqRlJQk1bSnl0sZjUYYDAabBxERUVf74XjrZRqTh3G0mNw6HYSsVisWLFiAm2++GcOHDwcA6HQ6qFQq+Pj42NQGBQVBp9NJNReHoLb1beuuVWMwGNDU1ITKykpYLJYr1ly8jev1cqnU1FR4e3tLj7CwsHb+NIiIiNqn3mjG7lOVAIDk4TwtJrdOB6F58+bh6NGjWLt2bVf2I6slS5ZAr9dLj+LiYrlbIiKiPmZHfgVMFisG+HtgcKCn3O04vE6N15s/fz42btyIXbt2ITQ0VFqu1WphMplQW1trcySmvLwcWq1Wqrl0dFfbSK6Lay4d3VVeXg6NRgM3Nzc4OTnBycnpijUXb+N6vVxKrVZDrVZ34CdBRETUMd8f++m0WGwQFAreTVpuHToiJITA/PnzsWHDBmzbtg0DBgywWT927Fi4uLggPT1dWpafn4+ioiIkJiYCABITE5Gbm2szuistLQ0ajQbDhg2Tai7eRltN2zZUKhXGjh1rU2O1WpGeni7VtKcXIiKinmQ0W7D9p9nmJw/jaTG70JGrsOfOnSu8vb3Fjh07RFlZmfRobGyUaubMmSPCw8PFtm3bxMGDB0ViYqJITEyU1pvNZjF8+HAxefJkkZ2dLbZu3SoCAgLEkiVLpJqzZ88Kd3d3sWjRIpGXlydWrlwpnJycxNatW6WatWvXCrVaLdasWSOOHz8unn76aeHj42MzGu16vVwPR40REVFX2n6iXEQs3ijG/yFNWCxWudvpszry/d2hIATgio/Vq1dLNU1NTeLZZ58Vvr6+wt3dXfziF78QZWVlNtspLCwUd911l3BzcxP+/v7ixRdfFC0tLTY127dvF6NGjRIqlUoMHDjQ5j3avP/++yI8PFyoVCoRHx8v9u3bZ7O+Pb1cC4MQERF1pZf/kyMiFm8Ur3yVI3crfVpHvr8VQggh19Eoe2cwGODt7Q29Xg+NRiN3O0RE1ItZrQLx/y8dlfVG/P2JeEwcEiB3S31WR76/OdcYERFRDzhcXIPKeiO8XJ1x08B+crdDP2EQIiIi6gFto8XuiAmEyplfv/aCe4KIiKibCSHw/bHWm/kmc24xu8IgRERE1M1OltfjXFUjVM5K3Mprg+wKgxAREVE3azsaNCHKHx7qTt3LmLoJgxAREVE342kx+8UgRERE1I2KqxtxrNQApQKYNDRQ7nboEgxCRERE3SjteOtosfGRfujnyfks7Q2DEBERUTdqOy02mafF7BKDEBERUTepqjfiQGE1AGDysCCZu6ErYRAiIiLqJul5FbAKIDZYgzA/d7nboStgECIiIuomPxznaDF7xyBERETUDRqMZuw6VQkAmBzL02L2ikGIiIioG+w8eQEmsxUR/dwRHeQldzt0FQxCRERE3eDimygqFAqZu6GrYRAiIiLqYiazFdtOVAAAknlazK4xCBEREXWxfWerUNdshr+nGqPDfOVuh66BQYiIiOgamlssOKEzoLLe2O7XtJ0Wu3NYEJRKnhazZ5wCl4iICK2jvM5cqMep8nqcqqjH6Yo6nKqoR3F1I6wCcFYqMGW4Fo/fHIkx4b5Xve7HahXStBo8LWb/GISIiMgh5Z7X45vskp9CTz1KapuuWuupdka90YyNOWXYmFOG4SEazEqMxD1xwXB1cbKpzT5fi4o6I7zUzvjZIP/u/hh0gxiEiIjI4aTnlWPuPw/BZLHaLPf3VGNwoCeiAj0xOOinPwO94O+pwrFSA/6eUYhvsktxtMSARf/OQeqWE/jV+DA8fFMEgn3cAPzvtNhtMYFQOfMKFHunEEIIuZuwVwaDAd7e3tDr9dBoNHK3Q0REXWDr0TI898VhtFgEJgz2x13D+7eGngBP+Hqorvv6mgYT1h4oxj/3nZOOIjkpFZg8LAizfhaJJV/loqCyAX95aDR+PjK4uz8OXUFHvr8ZhK6BQYiIqG/5JrsEC9cdgcUq8POR/fH29FFwcercURuzxYof8yrw2d5CZJytslmnclbi0O/uhKeaJ17k0JHvb+4hIiJyCOsPFuOl/+RACOD+MSFY8cs4ON3AiC5nJyWmDNdiynAt8nV1+CyjEBsOlaCpxYLbowMYgnoJHhG6Bh4RIiLqG/6VWYRXNuQCAGbEh+GPU0d0y7B2fWMLMs5WImFAv3adZqPuwSNCREREP1m9pwC//+44AOCxn0Vi2T3Dum3KC293F0wZ3r9btk3dg0GIiIj6rI92nkHqlhMAgKcnDsSSu2I47xfZYBAiIqI+6b30U/hz2kkAwHN3RGHhnUMYgugyDEJERGTX6o1mvPvjSSiVCgzo54FIfw8M8PdAoJf6isFGCIE3f8jHyu1nAAAv3jkEz00a3NNtUy/BIERERHbt/747ji8PFl+23F3lhIh+Hhjg747IiwLS1qM6fLq7AADw27uH4qmJA3u6ZepFGISIiMhu7Tp5QQpB08eFoczQjMLKBpyvaUSjyYK8MgPyygxXfO3r98Xi0cTIHuyWeiMGISIiskv1RjOWfNU65P2xn0XitXtjpXUmsxXFNY0orGxAQWUDCqsaUFjZiILKBhjNVixKHoLp48Plap16EQYhIiKyS6mb81BS24QwPze8NCXaZp3KWYlBAZ4YFOApU3fUV3A2OCIisjt7T1fi88wiAMCfpo2Eu4r/307dg0GIiIjsSoPRjMVf5QAAZiaE42eD/GXuiPoyBiEiIrIrK77PR3F1E4K9XfHyXTFyt0N9HIMQERHZjf0F1ViztxAAkDptJLxcXeRtiPo8BiEiIrILTSYLXvr3EQDAg+NCceuQAJk7IkfAIERERF0m40wV/px2EhWG5g6/9s9p+SisakSQRo3fpgzrhu6ILsfL8ImIqEscLzXgsdX7YTRb8el/z+K5SYPx+M2RUDs7Xfe1h4pqpLtBp94/At5uPCVGPYNHhIiI6Ibpm1ow9/MsGM1WeKqd0WCy4I0tJ5D89i78eLwcQoirvra5xYJF64/AKoD7R4fgjpigHuycHB2DEBER3RCrVeDFdUdwrqoRIT5u2LnoNrz5QBwCvNQorGrEk38/iFmrD+B0Rf0VX/9u+imcudCAAC81lt7DU2LUsxiEiIjohny06yx+zCuHykmJD2aOQT9PNX45NhTbf3Mbnrl1IFycFNh18gKmvLML/7fxOPRNLdJrc87X4uNdZwEAf5g6HD7uKrk+BjkoBiEiIuq0vWcqseL7EwCA1+6NRVyYj7TOU+2MJXcNxQ8v3IqkoYEwWwU+3V2AO97cgS/2F/10SiwHFqvAPXHBSI7VyvQpyJEpxLVO3Do4g8EAb29v6PV6aDQaudshIrIrOn0zfv7+f1FZb8K0MaF484GRUCgUV63fefICXv/uGM5caAAA9PNQoarBhH4eKqQtvBV+HjwaRF2jI9/fPCJEREQd1mKxYt6/DqGy3oQYrRf+MHX4NUMQANw6JABbF0zEqylD4aV2RlWDCQDw+n3DGYJINhw+T0REHZa6+QSyztXAS+2MDx8eCzfV9YfIA4CLkxJPThiIqaND8Nf/nkU/DxVSRvbv5m6Jro5BiIiIOmRjTin+tqf1nj9vPRiHSH+PDm/D31ONJXcN7erWiDqMp8aIiKjdTlfUYfG/W2eGn3PrIEzmBc7UyzEIERFRuzQYzZjzz0NoMFmQOLAffjN5iNwtEd0wBiEiIrouIQQW/ycHpyvqEaRR470Zo+HsxK8Q6v06/F/xrl27cM899yA4OBgKhQJff/21zfrHHnsMCoXC5jFlyhSbmurqasycORMajQY+Pj6YPXs26utt7ziak5ODCRMmwNXVFWFhYVi+fPllvaxfvx4xMTFwdXXFiBEjsHnzZpv1QggsXboU/fv3h5ubG5KSknDq1KmOfmQiIoe3Zm8hNuaUwVmpwMqHxiDASy13S0RdosNBqKGhAXFxcVi5cuVVa6ZMmYKysjLp8cUXX9isnzlzJo4dO4a0tDRs3LgRu3btwtNPPy2tNxgMmDx5MiIiIpCVlYUVK1bgtddew8cffyzV7N27FzNmzMDs2bNx+PBhTJ06FVOnTsXRo0elmuXLl+O9997Dhx9+iMzMTHh4eCA5ORnNzR2fFZmIyFEdKqrBHzflAQBeuXsoxkX6ydwRURcSNwCA2LBhg82yWbNmifvuu++qrzl+/LgAIA4cOCAt27Jli1AoFKKkpEQIIcQHH3wgfH19hdFolGoWL14soqOjpecPPvigSElJsdl2QkKCeOaZZ4QQQlitVqHVasWKFSuk9bW1tUKtVosvvviiXZ9Pr9cLAEKv17ernoiorzGZLeLOP+8QEYs3imc/zxJWq1XuloiuqyPf391ygnfHjh0IDAxEdHQ05s6di6qqKmldRkYGfHx8MG7cOGlZUlISlEolMjMzpZqJEydCpfrfDbaSk5ORn5+PmpoaqSYpKcnmfZOTk5GRkQEAKCgogE6ns6nx9vZGQkKCVHMpo9EIg8Fg8yAicmSf7S3EyfJ6+Lq74A/3Xf+miUS9TZcHoSlTpuDvf/870tPT8ac//Qk7d+7EXXfdBYvFAgDQ6XQIDAy0eY2zszP8/Pyg0+mkmqCgIJuatufXq7l4/cWvu1LNpVJTU+Ht7S09wsLCOvz5iYj6Cp2+GW+nnQQAvHxXDHx592fqg7r8hoq/+tWvpL+PGDECI0eOxKBBg7Bjxw5MmjSpq9+uSy1ZsgQLFy6UnhsMBoYhInJYf9ychwaTBaPDffDAWP5bSH1Tt499HDhwIPz9/XH69GkAgFarRUVFhU2N2WxGdXU1tFqtVFNeXm5T0/b8ejUXr7/4dVequZRarYZGo7F5EBE5oj2nK/HdkVIoFcD/3TccSiVPiVHf1O1B6Pz586iqqkL//q1zySQmJqK2thZZWVlSzbZt22C1WpGQkCDV7Nq1Cy0tLVJNWloaoqOj4evrK9Wkp6fbvFdaWhoSExMBAAMGDIBWq7WpMRgMyMzMlGqIiOhyJrMVS79pHYH78E0RGB7iLXNHRN2nw0Govr4e2dnZyM7OBtB6UXJ2djaKiopQX1+PRYsWYd++fSgsLER6ejruu+8+REVFITk5GQAwdOhQTJkyBU899RT279+PPXv2YP78+fjVr36F4OBgAMBDDz0ElUqF2bNn49ixY/jyyy/x7rvv2py2ev7557F161a89dZbOHHiBF577TUcPHgQ8+fPBwAoFAosWLAAf/jDH/Dtt98iNzcXjz76KIKDgzF16tQb/LEREfVdn+4uwJkLDejnocKLk6Plboeoe3V0SNr27dsFgMses2bNEo2NjWLy5MkiICBAuLi4iIiICPHUU08JnU5ns42qqioxY8YM4enpKTQajXj88cdFXV2dTc2RI0fELbfcItRqtQgJCRFvvPHGZb2sW7dODBkyRKhUKhEbGys2bdpks95qtYrf/e53IigoSKjVajFp0iSRn5/f7s/K4fNE5GhKahpFzKtbRMTijWL9wWK52yHqlI58fyuEEELGHGbXDAYDvL29odfreb0QETmEuf/MwpajOoyP9MW6ZxI5XJ56pY58f3OiGCIiAgDsPHkBW47q4KRU4HXeM4gcBIMQERHBaLbgtW+PAQBmJUZiaH8eBSfHwCBERET4666zKKhsQICXGgvuHCx3O0Q9hkGIiMjBFVc34i/bW+/19mrKUGhcXWTuiKjnMAgRETm41zceR3OLFTcN9MO9ccFyt0PUoxiEiIgc2LYT5Ug7Xg5nXiBNDopBiIjIQTW3WLDspwukn7hlAIYEecncEVHPYxAiInJQq3acQXF1E7QaV/x6Ei+QJsfU5bPPExGR/bJaBQ6eq8F3R0rx5YFiAMCrPx8KTzW/Dsgx8b98IqI+TgiBnPN6fHekFBtzyqAzNEvr7hwWhJQR/WXsjkheDEJERH2QEAIndHVS+CmqbpTWeamdkTxci3vignHzoH68QJocGoMQEVEfUlzdiK8OleC7nFKcrqiXlru5OCFpWBDuGdkfE4cEwNXFScYuiewHgxARUR9Q02DCu+mn8M9952C2ts6lrXJW4vboANwTF4w7YgLhruI/+USX4m8FEVEvZjJb8Y995/Be+inom1oAADdH9cP9o0NxZ2wQ7xJNdB0MQkREvZAQAj8cL0fq5jwUVrVe/xOj9cKrKcNwy2B/mbsj6j0YhIiIepmjJXr838bjyCyoBgD4e6rxm8lD8MC4MDgpeeEzUUcwCBER9RI6fTNWfJ+Prw6fhxCA2lmJpyYMxJzbBvE+QESdxN8cIiI712Sy4MOdZ/DxrrNoarEAAKaOCsaiKTEI8XGTuTui3o1BiIjIjpktVjy2er90GmxchC9e/fkwjArzkbcxoj6CQYiIyI69t+00Mguq4al2xp+mjcTdI7S8ASJRF2IQIiKyU3vPVOL9bacAAP/v/hFIGcmpMIi6GmefJyKyQ5X1RixYmw0hgOnjwnBvXLDcLRH1SQxCRER2xmoV+M36I6ioMyIq0BOv3Rsrd0tEfRaDEBGRnflk91nsyL8AtbMSKx8aAzcV5wUj6i4MQkREduRwUQ2Wb80HACy7JxbRWi+ZOyLq2xiEiIjshL6pBc99cRhmq0DKyP6YER8md0tEfR6DEBGRHRBC4JWvcnG+pglhfm5IvX8Eh8kT9QAGISIiO/DF/mJsyi2Ds1KB92eM4azxRD2EQYiISGYndAb8/rtjAICXpkTzrtFEPYhBiIhIRo0mM+b/6zCMZituiw7Ak7cMlLslIofCIEREJKPff3scpyvqEeilxlsPxEGp5HVBRD2JU2wQEXWhnPO1qGowQePqAm83Z2hcXaBxc4Gry+X3AvomuwRfHiyGQgG886tR6OeplqFjIsfGIERE1EX2F1Rj+scZEOLydSpn5U+h6H/hKKuwdUb55+4YjJ8N8u/hbokIYBAiIuoSQgis+P4EhAD6e7vC2UkBQ5MZdc0tsArAZLaist6IynqjzeviI/3w6zuiZOqaiBiEiIi6wK5TlThQWAO1sxIbnr0ZWm9XAK3zhjWYzDA0m2Foaml9/PR3o9mKu0do4ezEyzWJ5MIgRER0g4QQeOuH1mkxHrkpQgpBAKBUKuDl6gIvVxeE+LjJ1SIRXQX/N4SI6Ab9cLwcOef1cFc5Yc5tg+Ruh4g6gEGIiOgGWKwCf/7hJADgiZsHwJ8jv4h6FQYhIqIbsDGnFPnldfBydcZTE3gzRKLehkGIiKiTzBYr3vnxFADgmYkD4e3O+cGIehsGISKiTvrPofMoqGyAn4cKj908QO52iKgTGISIiDrBaLbgvfTTAIBnbxsETzUH4RL1RgxCRESdsHZ/MUpqmxCkUePhmyLkboeIOolBiIiog5pMFvxle+vRoPl3DL7iPGJE1DswCBERddDfMwpxoc6IUF83TB8XJnc7RHQDGISIiDqgrrkFH+48AwB4ftJgqJz5zyhRb8bfYCKiDvjb7kLUNLZgYIAHfjE6RO52iOgGMQgREbVTbaMJn/z3LABg4Z1DOFkqUR/A32Iionb6aNdZ1BnNGNpfg7uH95e7HSLqAgxCRETtUFHXjDV7CgEAL945BEqlQt6GiKhLMAgREbXDqh1n0NRiQVyYDyYNDZS7HSLqIh0OQrt27cI999yD4OBgKBQKfP311zbrhRBYunQp+vfvDzc3NyQlJeHUqVM2NdXV1Zg5cyY0Gg18fHwwe/Zs1NfX29Tk5ORgwoQJcHV1RVhYGJYvX35ZL+vXr0dMTAxcXV0xYsQIbN68ucO9EBFdT2ltEz7fVwQAWDQ5GgoFjwYR9RUdDkINDQ2Ii4vDypUrr7h++fLleO+99/Dhhx8iMzMTHh4eSE5ORnNzs1Qzc+ZMHDt2DGlpadi4cSN27dqFp59+WlpvMBgwefJkREREICsrCytWrMBrr72Gjz/+WKrZu3cvZsyYgdmzZ+Pw4cOYOnUqpk6diqNHj3aoFyKi63l/2ymYLFbcNNAPN0f1k7sdIupK4gYAEBs2bJCeW61WodVqxYoVK6RltbW1Qq1Wiy+++EIIIcTx48cFAHHgwAGpZsuWLUKhUIiSkhIhhBAffPCB8PX1FUajUapZvHixiI6Olp4/+OCDIiUlxaafhIQE8cwzz7S7l+vR6/UCgNDr9e2qJ6K+52BhlRjw8kYRsXij2F9QJXc7RNQOHfn+7tJrhAoKCqDT6ZCUlCQt8/b2RkJCAjIyMgAAGRkZ8PHxwbhx46SapKQkKJVKZGZmSjUTJ06ESqWSapKTk5Gfn4+amhqp5uL3aatpe5/29EJEdC1NJgt+sz4HVgHcPzoE4yP95G6JiLpYl06XrNPpAABBQUE2y4OCgqR1Op0OgYG2Fxo6OzvDz8/PpmbAgAGXbaNtna+vL3Q63XXf53q9XMpoNMJoNErPDQbDdT4xEfVlf9p6AgWVDdBqXLHs3li52yGibsBRYxdJTU2Ft7e39AgL4xxCRI5q75lKrNlbCABY/suR8HZzkbchIuoWXRqEtFotAKC8vNxmeXl5ubROq9WioqLCZr3ZbEZ1dbVNzZW2cfF7XK3m4vXX6+VSS5YsgV6vlx7FxcXt+NRE1NfUNbdg0focAMBDCeGYOCRA5o6IqLt0aRAaMGAAtFot0tPTpWUGgwGZmZlITEwEACQmJqK2thZZWVlSzbZt22C1WpGQkCDV7Nq1Cy0tLVJNWloaoqOj4evrK9Vc/D5tNW3v055eLqVWq6HRaGweROR4/rgpDyW1TQjzc8Mrdw+Vux0i6k4dvRK7rq5OHD58WBw+fFgAEH/+85/F4cOHxblz54QQQrzxxhvCx8dHfPPNNyInJ0fcd999YsCAAaKpqUnaxpQpU8To0aNFZmam2L17txg8eLCYMWOGtL62tlYEBQWJRx55RBw9elSsXbtWuLu7i48++kiq2bNnj3B2dhZvvvmmyMvLE8uWLRMuLi4iNzdXqmlPL9fCUWNEjmdbXrmIWLxRRL68UWScqZS7HSLqhI58f3c4CG3fvl0AuOwxa9YsIUTrsPXf/e53IigoSKjVajFp0iSRn59vs42qqioxY8YM4enpKTQajXj88cdFXV2dTc2RI0fELbfcItRqtQgJCRFvvPHGZb2sW7dODBkyRKhUKhEbGys2bdpks749vVwLgxCRY6lpMIrxf0gTEYs3ite/OyZ3O0TUSR35/lYIIYRcR6PsncFggLe3N/R6PU+TETmABWsP4+vsUgwM8MDmX0+Aq4uT3C0RUSd05Pubo8aIiABsyS3D19mlUCqAtx6IYwgichAMQkTk8Crrjfjt163T88y9bRBGh/vK3BER9RQGISJyaEIIvPJVLqobTIjReuHXkwbL3RIR9SAGISJyaF9nl+CH4+VwVirw1oNxUDvzlBiRI2EQIiKHVaZvwtJvjgEAnp80GLHB3jJ3REQ9jUGIiBySEAKL/5OLumYz4kK9Mfe2QXK3REQyYBAiIof06e4C7Dp5ASpnJd56MA7OTvznkMgRdens80RE9s5iFfh/m/Pw6e4CAMBLydGICvSSuSsikguDEBE5jLrmFvz6i8PYnn8BALAgaTBm3zJA5q6ISE4MQkTkEIqrGzH7swM4WV4P9U+nw34+MljutohIZgxCRNTn7S+oxpx/ZqG6wYRALzX++ug4xIX5yN0WEdkBBiEi6tPWHyzGKxty0WIRGB6iwSePjofW21XutojITjAIEVGfZLEKLN96Ah/tOgsAuHuEFm89MApuKt4wkYj+h0GIiPqceqMZC9Yexo95FQCAX08ajAWTBkOpVMjcGRHZGwYhIupTztc04snPDuKErg4qZyVW/HIk7hsVIndbRGSnGISIqE+obTTh31nnsWrHGVQ1mBDgpcbHj4zlTPJEdE0MQkTUawkhkHWuBp9nFmFTbhlMZisAYFh/DT6ZNQ7BPm4yd0hE9o5BiIh6HX1TCzYcOo9/7S/CyfJ6afmw/ho8lBCOX44NhasLL4omoutjECKiXkEIgeziWnyeWYSNOaVobmk9+uPqosS9ccF4KCECcaHeUCh4QTQRtR+DEBHZNSEE/nOoBJ/uLkBemUFaHh3khYcSwjF1dAi83Vxk7JCIejMGISKyax/vOovULScAACpnJX4+sj9mJoRjTLgvj/4Q0Q1jECIiu/XtkVIpBM29bRCemTgQPu4qmbsior6EQYiI7FLGmSr8Zt0RAMATNw/A4ikxMndERH2RUu4GiIgudbK8Dk//4yBMFivuGq7FqylD5W6JiPooBiEisivlhmY89rf9qGs2Y1yEL96ePopTYxBRt2EQIiK7UdfcgsdWH0CpvhkDAzzw10fH8X5ARNStGISIyC60WKx49vNDyCszwN9Thc8ej4evBy+MJqLuxSBERLITQuDl/+Tiv6cq4ebihL89Nh5hfu5yt0VEDoBBiIhk9/aPp/CfQ+fhpFTgg5ljMDLUR+6WiMhBMAgRkazW7i/Ce+mnAAB/mDoct8cEytwRETkSBiEiks32/Ar89uujAIDn7ojCjPhwmTsiIkfDIEREssgursW8zw/BYhW4f0wIFt45RO6WiMgB8c7SRNRjjGYL0o6X48sDxdh9uhJCALdE+eON+0dy3jAikgWDEBF1u9MVdVi7vxhfHS5BdYNJWp40NBBvTx8FlTMPThORPBiEiKhbNJrM2JRThi8PFOPguRppeZBGjQfHheHBcWEcIk9EsmMQIqIulXtej7UHivBtdinqjGYAgJNSgTtiAvGr8WG4dUgAnJ14BIiI7AODEBF1CbPFilc25GLdwfPSsnA/d0wfH4Zfjg1FkMZVxu6IiK6MQYiIbliTyYL5/zqE9BMVUCqAlJHBmDE+DDcN7McJU4nIrjEIEdEN0Te24Mm/H8CBwhqonZX4y0NjcOewILnbIiJqFwYhIuq0ckMzZv1tP07o6uDl6oxPZ41H/AA/udsiImo3BiEi6pSCygY88mkmztc0IcBLjb8/EY+h/TVyt0VE1CEMQkTUYUdL9Jj1t/2oajAhop87/vFEAsL7cSg8EfU+DEJE1CF7T1fi6X9kod5oxrD+Gnz2RDwCvNRyt0VE1CkMQkTUbltyy/D82myYLFbcNNAPHz86DhpXF7nbIiLqNAYhImqXzzPP4dWvj0IIIDk2CO/+ajRcXZzkbouI6IYwCBHRNQkh8Jdtp/FW2kkAwIz4MPxh6gg48f5ARNQHMAgR0TW9nXYS7207DQCYf3sUXpw8hDPFE1GfwSBERFe1ascZKQS9mjIUT04YKHNHRERdizMfEtEV/T2jEH/aegIA8NKUaIYgIuqTGISI6DLrDxZj6TfHALSeDnv2tiiZOyIi6h4MQkRkY2NOKRb/JwcA8PjNkXhx8hCZOyIi6j4MQkQkSc8rx4K12bAK4Ffjw7D058N4YTQR9WldHoRee+01KBQKm0dMTIy0vrm5GfPmzUO/fv3g6emJadOmoby83GYbRUVFSElJgbu7OwIDA7Fo0SKYzWabmh07dmDMmDFQq9WIiorCmjVrLutl5cqViIyMhKurKxISErB///6u/rhEfcae05WY+/khmK0C98YF44+/GMEQRER9XrccEYqNjUVZWZn02L17t7TuhRdewHfffYf169dj586dKC0txf333y+tt1gsSElJgclkwt69e/HZZ59hzZo1WLp0qVRTUFCAlJQU3H777cjOzsaCBQvw5JNP4vvvv5dqvvzySyxcuBDLli3DoUOHEBcXh+TkZFRUVHTHRybq1Q4WVuPJzw7CZLbizmFBeOvBON4niIgcg+hiy5YtE3FxcVdcV1tbK1xcXMT69eulZXl5eQKAyMjIEEIIsXnzZqFUKoVOp5NqVq1aJTQajTAajUIIIV566SURGxtrs+3p06eL5ORk6Xl8fLyYN2+e9NxisYjg4GCRmpra7s+i1+sFAKHX69v9GqLeJvd8rRi+dKuIWLxRPPzJPtHcYpa7JSKiG9KR7+9uOSJ06tQpBAcHY+DAgZg5cyaKiooAAFlZWWhpaUFSUpJUGxMTg/DwcGRkZAAAMjIyMGLECAQFBUk1ycnJMBgMOHbsmFRz8Tbaatq2YTKZkJWVZVOjVCqRlJQk1VyJ0WiEwWCweRD1ZSfL6/DIp5moM5oRH+mHjx8ZB7Uzp80gIsfR5UEoISEBa9aswdatW7Fq1SoUFBRgwoQJqKurg06ng0qlgo+Pj81rgoKCoNPpAAA6nc4mBLWtb1t3rRqDwYCmpiZUVlbCYrFcsaZtG1eSmpoKb29v6REWFtapnwFRb1BY2YCZn2SiprEFcaHe+PSxcXBTMQQRkWPp8jtL33XXXdLfR44ciYSEBERERGDdunVwc3Pr6rfrUkuWLMHChQul5waDgWGI+oTqBhPydXXI1xmQX16Pk+V1yCszoNFkQYzWC589EQ8vziJPRA6o26fY8PHxwZAhQ3D69GnceeedMJlMqK2ttTkqVF5eDq1WCwDQarWXje5qG1V2cc2lI83Ky8uh0Wjg5uYGJycnODk5XbGmbRtXolaroVarO/1ZieRmMltxvMyAk7o6nNDV4WR565+V9cYr1sdovfCP2QnwcVf1cKdERPah24NQfX09zpw5g0ceeQRjx46Fi4sL0tPTMW3aNABAfn4+ioqKkJiYCABITEzEH//4R1RUVCAwMBAAkJaWBo1Gg2HDhkk1mzdvtnmftLQ0aRsqlQpjx45Feno6pk6dCgCwWq1IT0/H/Pnzu/sjE/W4oqpGfL7/HNYfPI/qBtMVa8L93DEkyAvRWk9EazWIDvLCoAAPODvxdmJE5Li6PAj95je/wT333IOIiAiUlpZi2bJlcHJywowZM+Dt7Y3Zs2dj4cKF8PPzg0ajwXPPPYfExETcdNNNAIDJkydj2LBheOSRR7B8+XLodDq8+uqrmDdvnnS0Zs6cOfjLX/6Cl156CU888QS2bduGdevWYdOmTVIfCxcuxKxZszBu3DjEx8fjnXfeQUNDAx5//PGu/shEsjBbrNh2ogL/zCzCrpMXpOW+7i4YFqxBdJBGCj2DAz3hoeYcy0REl+ryfxnPnz+PGTNmoKqqCgEBAbjllluwb98+BAQEAADefvttKJVKTJs2DUajEcnJyfjggw+k1zs5OWHjxo2YO3cuEhMT4eHhgVmzZuH111+XagYMGIBNmzbhhRdewLvvvovQ0FB88sknSE5OlmqmT5+OCxcuYOnSpdDpdBg1ahS2bt162QXURL1NuaEZa/cXY+2BIpTpm6XlE4cE4OGEcNwRE8ijPERE7aQQQgi5m7BXBoMB3t7e0Ov10Gg0crdDDsxqFdhzphKf7ytCWl45LNbWX1s/DxUeGBeKh+LDEdHPQ+YuiYjsQ0e+v3msnMgOWawCZy7U40hxLXLO6/HfUxdQWNUorR8f6YuHb4rAlOFa3veHiOgGMAgRyUwIgeLqJhw5X4uc87U4cl6PYyV6NJgsNnWeamfcPyYEMxMiEK31kqlbIqK+hUGISAb6phb8I6MQBwprkHO+FjWNLZfVuKucMDzEG3Gh3ogL88Ht0YG84JmIqIvxX1WiHiSEwFeHSpC6JQ+V9f8b5u7ipMDQ/hqMDPXGyFAfxIX6ICrQkxOfEhF1MwYhoh5yQmfA0q+PYX9hNQBgUIAHZv0sEnGhPojp78VrfYiIZMAgRNTN6ppb8O6Pp7B6byEsVgE3Fyf8etJgzL5lAFTOHOZORCQnBiGibiKEwHc5ZfjDxuOoqGud4uKu4Vq8+vNhCPGx73n3iIgcBYMQUTc4XVGHpd8cw94zVQCAyH7ueO3eWNwWHShzZ0REdDEGIaIu1Ggy47300/h091m0WATUzkrMuz0KT08cCFcXXgNERGRvGISIukBziwVfHijGBztOo9zQehosaWgglt0TizA/d5m7IyKiq2EQIroBRrMF6w6ex8ptp6EztM77FerrhtfuiUXSMM5rR0Rk7xiEiDrBZLZifVYxVm47jdKfJj7t7+2KZ2+PwoPjQjkUnoiol2AQIuqAFosV/846j79sO42S2iYAQJBGjXm3R2H6+DAGICKiXoZBiKgdWixWbDhUgve2ncL5mtYAFOClxrO3DcKM+HBeCE1E1EsxCBFdQ5m+CVtydViztxBF1a2zv/t7qjH3tkGYmcAARETU2zEIEV2itLYJm3PLsDm3DIeKaqXl/TxUmHPrIDx8UwTcVAxARER9AYMQEYDzNY3YkqvDptwyZBfXSssVCmBchC9+PjIYD4wLhbuKvzJERH0J/1UnhySEQHF1E7YcLcPmozocuST8jI/0Q8qI/pgyXIsgjat8jRIRUbdiECK7V1jZgOKaRrirnOGhdoK7izPc1U7wUDnD1UUJhUJx2WtaLFbo9M0oqW1CSU0TSmubUKpvwvm2v9c2o6nFItUrFUD8gNbwkxyrRSDDDxGRQ2AQIrtktljxY14F/rGvEHtOV121TqEA3F2c4K52hofKCa4uTqhtbEF5XTOEuPZ7KBXATQP74a4R/TElVosAL3UXfwoiIrJ3DEJkVyrrjVi7vwj/yiySblSoVACDAjxhNFvRaLKg0WRGo6n1aI4QQIPJggaTBRcu2ZbKSYlgH1eE+Loh2Nut9U8fN4T6tP7Z38eV9/0hInJwDEIkOyEEDhXV4h8ZhdiUW4YWS+uhHD8PFaaPD8PMhHCE+trO12W1CjS1WNBgMqPJZEGDsTUgNZgs0Lg6I8TXDf4eaiiVl582IyIiasMgRLJpMlnw7ZES/D3jHI6VGqTlo8J88GhiBO4e0f+q9+lRKhXwUDvDQ83/hImIqPP4LUI9qu3ozzfZJfgmuxT6phYAgNpZiXvjgvFoYiRGhHrL3CURETkKBiHqEacr6qXw03aHZgAI93PHwzeF44GxYfD1UMnYIREROSIGIeo2On0zvjtSim+OlOBoyf9OfbmrnJAcq8XU0SGYEOXP63iIiEg2DELUpQzNLdiaq8PX2SXIOFslDWF3Vipw65AA3Dc6BHcODeIUFUREZBcYhKhLWKwCH+06g3d/PAWj2SotHxfhi/tGhyBlRH/48dQXERHZGQYhumFFVY1YuC4bB8/VAAAGB3pi6ugQ3BsXjDA/9+u8moiISD4MQtRpQgisP3gev//uGBpMFniqnbHsnmH45djQK057QUREZG8YhKhTKuuNWPJVLtKOlwMA4iP98NaDcTwCREREvQqDEHXYj8fL8fJXOaisN8HFSYHfTI7GkxMGwomjv4iIqJdhEKJ2azCa8YdNx/HF/mIAQHSQF96ePgrDgjUyd0ZERNQ5DELULlnnqvHCl0dQVN0IhQJ4asJALLxzyFWnwCAiIuoNGITomuqaW/DBjjP4aOcZWAUQ4uOGNx+IQ+KgfnK3RkREdMMYhOiKahtN+NueQqzZUwBDsxkAcP/oELx2Xyw0ri4yd0dERNQ1GITIRmW9EZ/8twD/yChEg8kCAIgK9MRvJkdjynCtzN0RERF1LQYhAtA6L9jHu87iX/vPobml9c7QQ/tr8NwdUZgSq+V8YERE1CcxCDm48zWN+HDnGaw7cB4mS2sAigv1xnN3DMakoYG8MSIREfVpDEIO6uyFeqzacQYbDpfAbG2dGXV8pC+eu2MwJgz2ZwAiIiKHwCDkQIQQ+O+pSqzeU4Dt+Rek5bdE+eO5O6KQMJAjwYiIyLEwCDmABqMZXx0uwZo9BThzoQEAoFAAk2IC8eztURgT7itzh0RERPJgEOrDiqsb8feMQqw9UIy6n4bAe6qd8cC4UMxKjESkv4fMHRIREcmLQaiPEUIg42wVVu8pxI955RCtl/8gsp87HvtZJKaNDYUX7wNEREQEgEGozzBbrPj2SCk+3nUWJ3R10vIJg/3xxM0DcOuQAA6BJyIiugSDUC/XYrFiw+ESrNx+GueqGgEAbi5OmDY2BI/9LBJRgV4yd0hERGS/GIR6KZPZiq8OncfKHadRXN0EAPDzUGH2LQPw8E0R8Hbj6S8iIqLrYRDqZYxmC9YfPI9VO86gpLY1APl7qvD0xIGYmRABDzV3KRERUXvxW7OXaG6xYN3BYqzacQZl+mYAQICXGnNuHYSH4sPhpnKSuUMiIqLeh0HIzukbW/DvQ+fx0c4zqKgzAgCCNGrMvXUQfhUfDlcXBiAiIqLOYhCyQ80tFqTnVeDr7BLsyK9Ai6V1DHywtyvm3h6FB8aGMgARERF1AYcIQitXrsSKFSug0+kQFxeH999/H/Hx8XK3ZcNiFcg4U4Wvs0vw/VEd6oxmaV2M1guPJkbil2NDoXJWytglERFR39Lng9CXX36JhQsX4sMPP0RCQgLeeecdJCcnIz8/H4GBgbL2JoRAbokeXx8uxXc5pbjw06kvoPXoz72jQjB1dDBitBoZuyQiIuq7FEK03Xu4b0pISMD48ePxl7/8BQBgtVoRFhaG5557Di+//PI1X2swGODt7Q29Xg+NpuvCSLmhGWv3F+Ob7BKcrWyQlvu4u+DuEf0xdVQIxkX48gaIREREndCR7+8+fUTIZDIhKysLS5YskZYplUokJSUhIyPjsnqj0Qij8X9HZQwGQ7f0pdM34+0fTwIA1M5K3DksCPeNCsGtQwJ46ouIiKgH9ekgVFlZCYvFgqCgIJvlQUFBOHHixGX1qamp+P3vf9/tfY0M9cYDY0Nx08B+SB6uhSfv/UNERCQLHn64yJIlS6DX66VHcXFxt7yPQqHAigfiMG1sKEMQERGRjPr0t7C/vz+cnJxQXl5us7y8vBxarfayerVaDbVa3VPtERERkcz69BEhlUqFsWPHIj09XVpmtVqRnp6OxMREGTsjIiIie9CnjwgBwMKFCzFr1iyMGzcO8fHxeOedd9DQ0IDHH39c7taIiIhIZn0+CE2fPh0XLlzA0qVLodPpMGrUKGzduvWyC6iJiIjI8fT5+wjdiO66jxARERF1n458f/fpa4SIiIiIroVBiIiIiBwWgxARERE5LAYhIiIiclgMQkREROSwGISIiIjIYTEIERERkcNiECIiIiKH1efvLH0j2u41aTAYZO6EiIiI2qvte7s994xmELqGuro6AEBYWJjMnRAREVFH1dXVwdvb+5o1nGLjGqxWK0pLS+Hl5QWFQnHdeoPBgLCwMBQXF3NKjl6A+6v34L7qPbivepe+ur+EEKirq0NwcDCUymtfBcQjQtegVCoRGhra4ddpNJo+9R9UX8f91XtwX/Ue3Fe9S1/cX9c7EtSGF0sTERGRw2IQIiIiIofFINSF1Go1li1bBrVaLXcr1A7cX70H91XvwX3Vu3B/8WJpIiIicmA8IkREREQOi0GIiIiIHBaDEBERETksBiEiIiJyWAxCXWjlypWIjIyEq6srEhISsH//frlb6lN27dqFe+65B8HBwVAoFPj6669t1gshsHTpUvTv3x9ubm5ISkrCqVOnbGqqq6sxc+ZMaDQa+Pj4YPbs2aivr7epycnJwYQJE+Dq6oqwsDAsX778sl7Wr1+PmJgYuLq6YsSIEdi8eXOXf97eLDU1FePHj4eXlxcCAwMxdepU5Ofn29Q0Nzdj3rx56NevHzw9PTFt2jSUl5fb1BQVFSElJQXu7u4IDAzEokWLYDabbWp27NiBMWPGQK1WIyoqCmvWrLmsH/5uXt2qVaswcuRI6YZ6iYmJ2LJli7Se+8l+vfHGG1AoFFiwYIG0jPurEwR1ibVr1wqVSiX+9re/iWPHjomnnnpK+Pj4iPLycrlb6zM2b94sfvvb34qvvvpKABAbNmywWf/GG28Ib29v8fXXX4sjR46Ie++9VwwYMEA0NTVJNVOmTBFxcXFi37594r///a+IiooSM2bMkNbr9XoRFBQkZs6cKY4ePSq++OIL4ebmJj766COpZs+ePcLJyUksX75cHD9+XLz66qvCxcVF5ObmdvvPoLdITk4Wq1evFkePHhXZ2dni7rvvFuHh4aK+vl6qmTNnjggLCxPp6eni4MGD4qabbhI/+9nPpPVms1kMHz5cJCUlicOHD4vNmzcLf39/sWTJEqnm7Nmzwt3dXSxcuFAcP35cvP/++8LJyUls3bpVquHv5rV9++23YtOmTeLkyZMiPz9fvPLKK8LFxUUcPXpUCMH9ZK/2798vIiMjxciRI8Xzzz8vLef+6jgGoS4SHx8v5s2bJz23WCwiODhYpKamythV33VpELJarUKr1YoVK1ZIy2pra4VarRZffPGFEEKI48ePCwDiwIEDUs2WLVuEQqEQJSUlQgghPvjgA+Hr6yuMRqNUs3jxYhEdHS09f/DBB0VKSopNPwkJCeKZZ57p0s/Yl1RUVAgAYufOnUKI1n3j4uIi1q9fL9Xk5eUJACIjI0MI0Rp8lUql0Ol0Us2qVauERqOR9s9LL70kYmNjbd5r+vTpIjk5WXrO382O8/X1FZ988gn3k52qq6sTgwcPFmlpaeLWW2+VghD3V+fw1FgXMJlMyMrKQlJSkrRMqVQiKSkJGRkZMnbmOAoKCqDT6Wz2gbe3NxISEqR9kJGRAR8fH4wbN06qSUpKglKpRGZmplQzceJEqFQqqSY5ORn5+fmoqamRai5+n7Ya7uur0+v1AAA/Pz8AQFZWFlpaWmx+jjExMQgPD7fZXyNGjEBQUJBUk5ycDIPBgGPHjkk119oX/N3sGIvFgrVr16KhoQGJiYncT3Zq3rx5SElJuexnyv3VOZx0tQtUVlbCYrHY/IcFAEFBQThx4oRMXTkWnU4HAFfcB23rdDodAgMDbdY7OzvDz8/PpmbAgAGXbaNtna+vL3Q63TXfh2xZrVYsWLAAN998M4YPHw6g9WepUqng4+NjU3vp/rrSz7lt3bVqDAYDmpqaUFNTw9/NdsjNzUViYiKam5vh6emJDRs2YNiwYcjOzuZ+sjNr167FoUOHcODAgcvW8feqcxiEiKhbzZs3D0ePHsXu3bvlboWuIjo6GtnZ2dDr9fj3v/+NWbNmYefOnXK3RZcoLi7G888/j7S0NLi6usrdTp/BU2NdwN/fH05OTpddmV9eXg6tVitTV46l7ed8rX2g1WpRUVFhs95sNqO6utqm5krbuPg9rlbDfX25+fPnY+PGjdi+fTtCQ0Ol5VqtFiaTCbW1tTb1l+6vzu4LjUYDNzc3/m62k0qlQlRUFMaOHYvU1FTExcXh3Xff5X6yM1lZWaioqMCYMWPg7OwMZ2dn7Ny5E++99x6cnZ0RFBTE/dUJDEJdQKVSYezYsUhPT5eWWa1WpKenIzExUcbOHMeAAQOg1Wpt9oHBYEBmZqa0DxITE1FbW4usrCypZtu2bbBarUhISJBqdu3ahZaWFqkmLS0N0dHR8PX1lWoufp+2Gu7r/xFCYP78+diwYQO2bdt22enGsWPHwsXFxebnmJ+fj6KiIpv9lZubaxNe09LSoNFoMGzYMKnmWvuCv5udY7VaYTQauZ/szKRJk5Cbm4vs7GzpMW7cOMycOVP6O/dXJ8h9tXZfsXbtWqFWq8WaNWvE8ePHxdNPPy18fHxsrsynG1NXVycOHz4sDh8+LACIP//5z+Lw4cPi3LlzQojW4fM+Pj7im2++ETk5OeK+++674vD50aNHi8zMTLF7924xePBgm+HztbW1IigoSDzyyCPi6NGjYu3atcLd3f2y4fPOzs7izTffFHl5eWLZsmUcPn+JuXPnCm9vb7Fjxw5RVlYmPRobG6WaOXPmiPDwcLFt2zZx8OBBkZiYKBITE6X1bcN8J0+eLLKzs8XWrVtFQEDAFYf5Llq0SOTl5YmVK1decZgvfzev7uWXXxY7d+4UBQUFIicnR7z88stCoVCIH374QQjB/WTvLh41JgT3V2cwCHWh999/X4SHhwuVSiXi4+PFvn375G6pT9m+fbsAcNlj1qxZQojWIfS/+93vRFBQkFCr1WLSpEkiPz/fZhtVVVVixowZwtPTU2g0GvH444+Luro6m5ojR46IW265RajVahESEiLeeOONy3pZt26dGDJkiFCpVCI2NlZs2rSp2z53b3Sl/QRArF69WqppamoSzz77rPD19RXu7u7iF7/4hSgrK7PZTmFhobjrrruEm5ub8Pf3Fy+++KJoaWmxqdm+fbsYNWqUUKlUYuDAgTbv0Ya/m1f3xBNPiIiICKFSqURAQICYNGmSFIKE4H6yd5cGIe6vjlMIIYQ8x6KIiIiI5MVrhIiIiMhhMQgRERGRw2IQIiIiIofFIEREREQOi0GIiIiIHBaDEBERETksBiEiIiJyWAxCRERE5LAYhIiIiMhhMQgRERGRw2IQIiIiIofFIEREREQO6/8DPv2mphBXey0AAAAASUVORK5CYII="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.plot(list(h2), list(h1))"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 113,
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/var/folders/yz/hjlw4lyn3rq0s5y_r82b55cw0000gn/T/ipykernel_87087/2826574253.py:2: RuntimeWarning: invalid value encountered in log\n",
|
||
" return a * x * np.log(x * b)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "array([2.41394321e+00, 2.82344150e-04])"
|
||
},
|
||
"execution_count": 113,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"p, _ = scipy.optimize.curve_fit(m, list(h2), list(h1))\n",
|
||
"p"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 112,
|
||
"outputs": [],
|
||
"source": [
|
||
"def m(x, a, b):\n",
|
||
" return a * x * np.log(x * b)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 114,
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": "[<matplotlib.lines.Line2D at 0x29c682ad0>]"
|
||
},
|
||
"execution_count": 114,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhNElEQVR4nO3deXwU9f3H8ddukt0khE3CkYRAwikgt4DEeCuRSKmCoiKi4n1BK2JRaStY2/6waq0XYtUqaFUOFQUElHJ6hCvch+EmXEm4kg25s/v9/bGysIKQQJLN8X4+HvswM/OZmc8OhH07O98ZizHGICIiIlIHWf3dgIiIiIi/KAiJiIhInaUgJCIiInWWgpCIiIjUWQpCIiIiUmcpCImIiEidpSAkIiIidZaCkIiIiNRZgf5uoDpzu93s37+f+vXrY7FY/N2OiIiIlIExhtzcXGJjY7Faz3zOR0HoDPbv309cXJy/2xAREZFzsGfPHpo1a3bGGgWhM6hfvz7gOZAOh8PP3YiIiEhZOJ1O4uLivJ/jZ6IgdAbHvw5zOBwKQiIiIjVMWS5r0cXSIiIiUmcpCImIiEidpSAkIiIidZaCkIiIiNRZCkIiIiJSZykIiYiISJ2lICQiIiJ1loKQiIiI1FkKQiIiIlJnKQiJiIhInaUgJCIiInWWgpCIiIjUWQpCIiIiUvVKi2HaPbBphl/bUBASERGRqlVaDJ/dCxunw5ePQt5hv7US6Lc9i4iISN1z/ExQ2tcQYIdbJ0G9hn5rR0FIREREqkZpEUwdClvmeELQ4E+gTZJfW1IQEhERkcpXWgRT74YtcyEwGG7/BNr09ndXCkIiIiJSyUqLYMpdsPUbTwgaPBlaX+PvrgAFIREREalMJYUw9S7Y+i0EhsAdk6HV1f7uyktBSERERCpHSSFMuRO2zfs5BE2BVlf5uysfCkIiIiJS8UoKYcoQ2PY/TwgaMhVaXunvrk6hICQiIiIVq6QAJg+B7fMhKBTumAotr/B3V6elICQiIiIVpzgfJt8BOxZ6QtCQadDicn939asUhERERKRiFOfDp4Ng5xIIqvdzCLrM312dkYKQiIiInL/iPPhkEOz6DmxhMOQzaJ7o767OSkFIREREzk/RMfjkNtj9A9jqw52fQ3yCv7sqEwUhEREROXdFufDxrZCeAnYH3PkFxF3s767KTEFIREREzk2hEz6+BfYsA3s43DUdmvXwd1floiAkIiIi5VeYA/8dCHtXQHA43PUlNO3u767KTUFIREREyqcgG/57M+xLheAIuPsriO3m56bOjbU8xRMmTKBLly44HA4cDgeJiYnMmTPHu7ywsJBhw4bRsGFDwsLCGDhwIJmZmT7bSE9Pp1+/foSGhhIVFcWoUaMoLS31qVm0aBHdu3fHbrfTpk0bJk6ceEov48ePp0WLFgQHB5OQkMDy5ct9lpelFxERESmngqPw0QBPCAqJhKEzamwIgnIGoWbNmvHCCy+QmprKypUrufbaa+nfvz8bN24E4IknnmDmzJlMmzaNxYsXs3//fm6++Wbv+i6Xi379+lFcXMyPP/7IpEmTmDhxImPGjPHW7Ny5k379+nHNNdewZs0aRowYwQMPPMA333zjrZkyZQojR45k7NixrFq1iq5du5KcnExWVpa35my9iIiISDnlH4EP+8P+1RDSAIbOhCZd/d3V+THnKTIy0rz33nsmOzvbBAUFmWnTpnmXbd682QAmJSXFGGPM7NmzjdVqNRkZGd6aCRMmGIfDYYqKiowxxjz11FOmY8eOPvsYNGiQSU5O9k736tXLDBs2zDvtcrlMbGysGTdunDHGlKmXssjJyTGAycnJKfM6IiIitdKxQ8a8dZkxYx3G/KOVMRkb/N3RryrP53e5zgidzOVyMXnyZPLy8khMTCQ1NZWSkhKSkpK8Ne3btyc+Pp6UlBQAUlJS6Ny5M9HR0d6a5ORknE6n96xSSkqKzzaO1xzfRnFxMampqT41VquVpKQkb01ZejmdoqIinE6nz0tERKTOO3YQJt0AmeuhXhTc8zVEd/R3VxWi3EFo/fr1hIWFYbfbeeSRR5g+fTodOnQgIyMDm81GRESET310dDQZGRkAZGRk+ISg48uPLztTjdPppKCggEOHDuFyuU5bc/I2ztbL6YwbN47w8HDvKy4urmwHRUREpLbKzYRJv4WsjRAW4wlBUe393VWFKXcQateuHWvWrGHZsmU8+uijDB06lE2bNlVGb1Vu9OjR5OTkeF979uzxd0siIiL+4zwAE/vBwZ+gfizcOxsat/V3VxWq3MPnbTYbbdq0AaBHjx6sWLGC1157jUGDBlFcXEx2drbPmZjMzExiYmIAiImJOWV01/GRXCfX/HJ0V2ZmJg6Hg5CQEAICAggICDhtzcnbOFsvp2O327Hb7eU4GiIiIrVUzj7P12FHtoOjGdwzExq08ndXFe6crxE6zu12U1RURI8ePQgKCmL+/PneZWlpaaSnp5OY6HnoWmJiIuvXr/cZ3TVv3jwcDgcdOnTw1py8jeM1x7dhs9no0aOHT43b7Wb+/PnemrL0IiIiIr8iew9M/I0nBEXEw71f18oQBJRv1NgzzzxjFi9ebHbu3GnWrVtnnnnmGWOxWMy3335rjDHmkUceMfHx8WbBggVm5cqVJjEx0SQmJnrXLy0tNZ06dTJ9+vQxa9asMXPnzjWNGzc2o0eP9tbs2LHDhIaGmlGjRpnNmzeb8ePHm4CAADN37lxvzeTJk43dbjcTJ040mzZtMg899JCJiIjwGY12tl7KQqPGRESkzjmyy5h/dfKMDnu1izFHd/u7o3Irz+d3uYLQfffdZ5o3b25sNptp3Lix6d27tzcEGWNMQUGBeeyxx0xkZKQJDQ01N910kzlw4IDPNnbt2mX69u1rQkJCTKNGjcyTTz5pSkpKfGoWLlxounXrZmw2m2nVqpX54IMPTunljTfeMPHx8cZms5levXqZpUuX+iwvSy9noyAkIiJ1yuHtxrzS0ROCXutmTPZef3d0Tsrz+W0xxhj/npOqvpxOJ+Hh4eTk5OBwOPzdjoiISOU5tM1zTVDufmjYBobOAkcTf3d1Tsrz+a1njYmIiNR1B9M8IehYJjRq53lsRv1fH1xUmygIiYiI1GWZG2HSjZB/CKI6eh6gGtbY311VGQUhERGRuurAOs+zwwqOQEwXTwgKbeDvrqqUgpCIiEhdtG8VfHQTFGZDbHe46wvP0+TrGAUhERGRumbPCvjvzVDkhGa94M7PIDjc3135hYKQiIhIXbI7BT6+FYpzIf5SGDIV7PX93ZXfKAiJiIjUFTu/g08GQUketLgC7pgCtnr+7sqvzvsRGyIiIlIDbF/oORNUkgetr4U7ptb5EAQ6IyQiIlL7bfkWptwJriK4oA/c9hEEBfu7q2pBZ4RERERqs5++hsl3eEJQu34w6L8KQSdREBIREamtNk6HqXeDuwQ6DIDbJkGg3d9dVSsKQiIiIrXR2inw2X3gLoUug2DgfyAgyN9dVTsKQiIiIrXNqo9g+sNg3HDRnTBgAgTosuDTURASERGpTVa8BzOGAwZ63g83vAHWAH93VW0pCImIiNQWKW/B1096fr7kMej3T7Dqo/5MdHRERERqg+//Bd+M9vx82QhI/j+wWPzaUk2gLwxFRERqMmNg8Yuw6P8801c9A1c/oxBURgpCIiIiNZUxMP95+P4Vz3TvMXDFk/7tqYZREBIREamJjIFv/ghL3/JM9/k7XDrcvz3VQApCIiIiNY3bDV+PhNQPPNP9/gkXP+DfnmooBSEREZGaxO2Cr4bD2k8AC/R/03OvIDknCkIiIiI1hasEvngINn4BlgC4+R3ofIu/u6rRNHxeRETED3IKSnjl2zSKS91lW6G0CKbd4wlB1iC4daJCUAXQGSEREZEqNm9TJn+avp6s3CKsVgsjktqeeYWSAphyF2ybBwF2zxPk2/apmmZrOQUhERGRKnL4WBF/mbmJGWv3A9CqUT0ub9PozCsV58Gnt8POJRAUCoM/hVZXV36zdYSCkIiISCUzxjBr3QHGztjIkbxirBZ46MrWjEi6gOCgMzwHrNAJn9wG6Slgqw9DpkLzS6uu8TpAQUhERKQSZTkL+fOXG/h2UyYA7WPq8+ItXejSLOLMK+Yfgf/eDPtXQ3A43PkFNOtZ+Q3XMQpCIiIilcAYw2epe/nrrE04C0sJtFoYfm0bHru6DbbAs4xVOnYQPhoAmRsgtCHcNR2adK2SvusaBSEREZEKtj+7gGe+WM+SLQcB6Nw0nBdv6cKFTRxnX9m5HybdCIe3Qlg03D0DotpXcsd1l4KQiIhIBdqWlcvt7yzj0LEibIFWRl7Xlgcub0lgQBnuWHN0N3x4IxzdBY5mMHQGNGxd6T3XZQpCIiIiFWRrZi6D313KoWPFtI+pz/gh3WndOKxsKx/a5glBzn0Q2dITgiLiK7dhURASERGpCGkZudzx7lIO5xXToYmDjx9IILKerWwrZ26CD/tDXhY0agd3fwWOJpXbsAAKQiIiIuftpwwnd7y7jCN5xXSM9YSgiNAyhqD9a+Cjm6DgCER3hru/hHpnubeQVBgFIRERkfOwab+TIe8t5Wh+CZ2bhvPR/b3KHoLSl8HHt0CRE5r2gDs/h5DIym1YfCgIiYiInKON+3MY8t4ysvNL6NosnA/vSyA8NKhsK+9cAp/cDiV5EH8p3DEFgsswqkwqlIKQiIjIOdiwzxOCcgpK6BYXwaT7ehEeUsYQtOVbmHoXlBZCq2vg9k/AFlq5DctpKQiJiIiU0/q9OQx5bynOwlIuiveEIEdwGUPQxi/h8wfAXQLtfgO3fABBwZXar/w6BSEREZFyWLsnm7v+swxnYSk9mkcy8d6LqV/WELTmE/hqGBg3dBoIN/0bAsq4rlSKMtzdSURERACOFZVyzwfLcRaW0rN5JJPu61X2ELT8XfjyUU8IuuguuPldhaBqQEFIRESkjGavO8DR/BKaNwxl4n29CLOX8YuVH16D2X/w/JzwCNzwOljP8NR5qTL6akxERKSMpqXuAWDQxXFlC0HGwKJxsPgfnukr/gDX/hkslkrsUsqjXGeExo0bx8UXX0z9+vWJiopiwIABpKWl+dRcffXVWCwWn9cjjzziU5Oenk6/fv0IDQ0lKiqKUaNGUVpa6lOzaNEiunfvjt1up02bNkycOPGUfsaPH0+LFi0IDg4mISGB5cuX+ywvLCxk2LBhNGzYkLCwMAYOHEhmZmZ53rKIiAgAOw/lsWLXUawWGNi92dlXMAa++dOJENR7DPR+ViGomilXEFq8eDHDhg1j6dKlzJs3j5KSEvr06UNeXp5P3YMPPsiBAwe8rxdffNG7zOVy0a9fP4qLi/nxxx+ZNGkSEydOZMyYMd6anTt30q9fP6655hrWrFnDiBEjeOCBB/jmm2+8NVOmTGHkyJGMHTuWVatW0bVrV5KTk8nKyvLWPPHEE8ycOZNp06axePFi9u/fz80331zugyQiIvLZz2eDrmzbmGjHWUZ5uV0wawQsHe+Z7vsiXPFk5TYo58ach6ysLAOYxYsXe+ddddVV5vHHH//VdWbPnm2sVqvJyMjwzpswYYJxOBymqKjIGGPMU089ZTp27Oiz3qBBg0xycrJ3ulevXmbYsGHeaZfLZWJjY824ceOMMcZkZ2eboKAgM23aNG/N5s2bDWBSUlLK9P5ycnIMYHJycspULyIitVOpy20S/v4/0/zpWWbW2v1nKS425rMHjBnrMOa5CGNSP6yaJsWrPJ/f53WxdE5ODgANGjTwmf/xxx/TqFEjOnXqxOjRo8nPz/cuS0lJoXPnzkRHR3vnJScn43Q62bhxo7cmKSnJZ5vJycmkpKQAUFxcTGpqqk+N1WolKSnJW5OamkpJSYlPTfv27YmPj/fW/FJRURFOp9PnJSIi8v22Q2Q4C4kIDSKpQ9SvF5YWwdShsH4qWANh4HvQ/a6qa1TK7Zwvlna73YwYMYLLLruMTp06eeffcccdNG/enNjYWNatW8fTTz9NWloaX3zxBQAZGRk+IQjwTmdkZJyxxul0UlBQwNGjR3G5XKet+emnn7zbsNlsREREnFJzfD+/NG7cOP7yl7+U80iIiEhtN3Wl52uxAd2aYg/8ldFexXkweQjsWAgBdrjtQ2h3fRV2KefinIPQsGHD2LBhA99//73P/Iceesj7c+fOnWnSpAm9e/dm+/bttG7d+tw7rQKjR49m5MiR3mmn00lcXJwfOxIREX/Lzi9m3kbPQJtbevzKRdIF2fDJbbBnGQTVgzsmQ8srq65JOWfn9NXY8OHDmTVrFgsXLqRZszNfOZ+QkADAtm3bAIiJiTll5Nbx6ZiYmDPWOBwOQkJCaNSoEQEBAaetOXkbxcXFZGdn/2rNL9ntdhwOh89LRETqthlr91PscnNhEwedmoafWpB3CCb91hOCgsPh7q8UgmqQcgUhYwzDhw9n+vTpLFiwgJYtW551nTVr1gDQpEkTABITE1m/fr3P6K558+bhcDjo0KGDt2b+/Pk+25k3bx6JiYkA2Gw2evTo4VPjdruZP3++t6ZHjx4EBQX51KSlpZGenu6tEREROZtpK/cCcOvpzgbl7IMP+kLGeqjXGO75GuIuruIO5byU5yrsRx991ISHh5tFixaZAwcOeF/5+fnGGGO2bdtmnn/+ebNy5Uqzc+dO89VXX5lWrVqZK6+80ruN0tJS06lTJ9OnTx+zZs0aM3fuXNO4cWMzevRob82OHTtMaGioGTVqlNm8ebMZP368CQgIMHPnzvXWTJ482djtdjNx4kSzadMm89BDD5mIiAif0WiPPPKIiY+PNwsWLDArV640iYmJJjExsczvV6PGRETqts0Hckzzp2eZNn/82hw+VuS78PB2Y/7VyTM67J8XGnNwi3+alFOU5/O7XEEIOO3rgw8+MMYYk56ebq688krToEEDY7fbTZs2bcyoUaNOaWTXrl2mb9++JiQkxDRq1Mg8+eSTpqSkxKdm4cKFplu3bsZms5lWrVp593GyN954w8THxxubzWZ69eplli5d6rO8oKDAPPbYYyYyMtKEhoaam266yRw4cKDM71dBSESkbnt+5kbT/OlZ5uEPV/ouyNxszEttPSHotW7GHN3tnwbltMrz+W0xxhh/nY2q7pxOJ+Hh4eTk5Oh6IRGROqbE5eaS/5vP4bxi/jO0J70v/Hmk8v7V8NHNUHAEojrAXV9C/egzbkuqVnk+v/WsMRERkdNY8FMWh/OKaVzfzlVtG3tm7v4RPhkERU6I7Q53fg6hDc68IanWFIRERERO4/hF0jd3b0pggBW2zoMpd0JpITS/3DNE3l7fz13K+TqvO0uLiIjURlm5hSxM84xuvrVHHGycDp8O9oSgC5Lhzs8UgmoJBSEREZFf+HL1Plxuw0XxEbTZ+wV8dh+4S6DTQLj9YwgK8XeLUkEUhERERE5ijPF+LfZsgwUw43dg3NDjHrj5XQgI8m+DUqF0jZCIiMhJ1u7NYWtWLqNsX9D9p889My/9PVz3PFgs/m1OKpyCkIiIyEk+W7GbsYEfcq/1G8+Ma5+FK55UCKqlFIRERER+VlhURM91YxgQuMgzo+9LkPDQGdeRmk1BSEREBKC0iCMThzCARZRixdp/PNaL7vB3V1LJdLG0iIhI0TH4ZBCxB+ZRZAKZ3f4FhaA6QmeERESkRjt8rIj5m7OwBVpxhAQSHhKEIzgIx8//DQ6yYvn5+h5jDEfyitmXXcD+7AL2ZRdy+GAGt/w0klZFm8gzdh4qGckLfe7y87uSqqIgJCIiNdrYGRuZte7Ary4PCrDgCA4ixBbAoWNFFJa4vcsac5SPbC/QyrqHbFOPe4ufotGFlxPXILQqWpdqQEFIRERqrMISFwt+8twBumfzSIpK3TgLS3AWlOAsLMXlNpS4DIfziiHvxHpR9e10q5/D33P/TuOS/eTbGrH56g/4e4tutIvRHaPrEgUhERGpsVJ2HCa/2EWMI5hpjyR6vwIDz9dg+cWun4NRKceKSmkUZiMmPBj7kS3w4TAoyYCI5oTe/RWJDVr68Z2IvygIiYhIjfW/TZkA9L4wyicEAVgsFurZA6lnD6RJ+EkL9q6Ej2+BgqMQ1QHu/AIcTaqwa6lOFIRERKRGMsbwv82eIJTUIbpsK+1YBJ/eASV50LQnDJkGoQ0qr0mp9hSERESkRtqwz0mms4hQWwCJrRqefYXNs+Cze8FVDC2vgts/AXtY5Tcq1ZruIyQiIjXSvJ/PBl15QWOCgwLOXLzmE5h6tycEtf+t50yQQpCgICQiIjXU/LJ+Lfbjm/Dlo2Bc0G0I3DoJAu1V0KHUBPpqTEREapz92QVs3O/EaoFr2jU+fZExsOBv8N3LnunE4XDdX8GqcwBygoKQiIjUOMfPBnWPj6Rh2GnO7rhdMPsPsPJ9z3TvMXD5SD1BXk6hICQiIjXOvM2emyie9mux0mKY/jBs/AKwwG9fgZ73VW2DUmMoCImISI2SW1hCyvZDACRd+IsgVJwHU+6C7fPBGgQ3vwOdbvZDl1JTKAiJiEiN8t3WQ5S4DC0b1aN143onFuQfgU8Gwd7lEBQKgz6CNkn+a1RqBAUhERGpUY7fTTrp5LtJOw/Af2+GrE0QHOEZHh/Xy39NSo2hICQiIjVGqcvNwrSfrw86/rXYkR3w4QDI3g1hMXDXdIju4L8mpUZREBIRkRpjVXo2R/NLCA8JokfzSDiwDv47EPKyILIl3P0lRLbwd5tSgygIiYhIjXH82WLXto8icE8KfHo7FDkhujPc+TnUL+Mzx0R+prtKiYhIjXH8+qA7wjd6rgkqckL8pXDPLIUgOSc6IyQiIjXC9oPH2HEoj0GBS+i57F3PIzPa9oVbP4CgEH+3JzWUgpCIiNQI/9uUyYMBs/hT4CdggK53wI1vQIA+yuTc6W+PiIhUf8YQs3wcDwdN80zruWFSQfQ3SEREqjdXKUVfPEb/PE8Iyr7sz5D8d4UgqRD6WyQiItVXSSFMG4p9/Se4jIV/hf6eiOtG+bsrqUUUhEREpHoqzPHcI+inWZRYgni0ZASm253+7kpqGV0jJCIi1U9upicEZa7H2MJ4oHAki93tGX66p82LnAedERIRkerl8HZ4vw9krod6UaRe818WF7cn2mGnU2y4v7uTWkZBSEREqo/9a+D9ZDi6y/OojPu/4avMxgD0vjAaq9Xiz+6kFlIQEhGR6mHHYpj4W8g7CDGd4b5vMZEtvY/VSLowys8NSm2ka4RERMT/Nn4JXzwIrmJocQXc/jEEh7NxXw4HcgoJCQrg0taN/N2l1EIKQiIi4l8r/gNfPwkYuPAGuPk9CAoGTjxk9YoLGhEcFODHJqW2KtdXY+PGjePiiy+mfv36REVFMWDAANLS0nxqCgsLGTZsGA0bNiQsLIyBAweSmZnpU5Oenk6/fv0IDQ0lKiqKUaNGUVpa6lOzaNEiunfvjt1up02bNkycOPGUfsaPH0+LFi0IDg4mISGB5cuXl7sXERHxE2Ng0Qvw9UjAQI974NZJ3hAEMO/nh6wmabSYVJJyBaHFixczbNgwli5dyrx58ygpKaFPnz7k5eV5a5544glmzpzJtGnTWLx4Mfv37+fmm2/2Lne5XPTr14/i4mJ+/PFHJk2axMSJExkzZoy3ZufOnfTr149rrrmGNWvWMGLECB544AG++eYbb82UKVMYOXIkY8eOZdWqVXTt2pXk5GSysrLK3IuIiPiJ2+U5C7RonGf6yqfgt6+C9cRZnz1H8tm434nVAte21/VBUknMecjKyjKAWbx4sTHGmOzsbBMUFGSmTZvmrdm8ebMBTEpKijHGmNmzZxur1WoyMjK8NRMmTDAOh8MUFRUZY4x56qmnTMeOHX32NWjQIJOcnOyd7tWrlxk2bJh32uVymdjYWDNu3Lgy93I2OTk5BjA5OTllqhcRkTIoLjBm8p3GjHUYMzbcmKX/Pm3Zu0u2m+ZPzzKD/v1j1fYnNV55Pr/Pa9RYTk4OAA0aNAAgNTWVkpISkpKSvDXt27cnPj6elJQUAFJSUujcuTPR0SdOcyYnJ+N0Otm4caO35uRtHK85vo3i4mJSU1N9aqxWK0lJSd6asvTyS0VFRTidTp+XiIhUoON3i948A6xBcMt/IOGh05bO2ZABwPUdY6qyQ6ljzjkIud1uRowYwWWXXUanTp0AyMjIwGazERER4VMbHR1NRkaGt+bkEHR8+fFlZ6pxOp0UFBRw6NAhXC7XaWtO3sbZevmlcePGER4e7n3FxcWV8WiIiMhZOQ/AB7+B3d+DrT7c+Tl0Gnja0kxnIam7jwJwfacmVdml1DHnHISGDRvGhg0bmDx5ckX241ejR48mJyfH+9qzZ4+/WxIRqR0ObYP/9IHMDVAvCu79Glpd9avl3270/A/rRfERxIQH/2qdyPk6p+Hzw4cPZ9asWSxZsoRmzZp558fExFBcXEx2drbPmZjMzExiYmK8Nb8c3XV8JNfJNb8c3ZWZmYnD4SAkJISAgAACAgJOW3PyNs7Wyy/Z7Xbsdns5joSIiJzV3lT45FbIPwwNWsGdX0CDlmdc5fjXYn076WsxqVzlOiNkjGH48OFMnz6dBQsW0LKl71/kHj16EBQUxPz5873z0tLSSE9PJzExEYDExETWr1/vM7pr3rx5OBwOOnTo4K05eRvHa45vw2az0aNHD58at9vN/PnzvTVl6UVERCrZ1v/BpN96QlCTbnDft2cNQUfyilm28wgA13fU12JSycpzFfajjz5qwsPDzaJFi8yBAwe8r/z8fG/NI488YuLj482CBQvMypUrTWJioklMTPQuLy0tNZ06dTJ9+vQxa9asMXPnzjWNGzc2o0eP9tbs2LHDhIaGmlGjRpnNmzeb8ePHm4CAADN37lxvzeTJk43dbjcTJ040mzZtMg899JCJiIjwGY12tl7ORqPGRETOw5pPjflLA8/osEn9jSl0lmm1KcvTTfOnZ5m+ry6p3P6k1irP53e5ghBw2tcHH3zgrSkoKDCPPfaYiYyMNKGhoeamm24yBw4c8NnOrl27TN++fU1ISIhp1KiRefLJJ01JSYlPzcKFC023bt2MzWYzrVq18tnHcW+88YaJj483NpvN9OrVyyxdutRneVl6ORMFIRGRc/T9az8Pj3cY89n9xpQUlXnVe95fZpo/Pcu8/r8tldig1Gbl+fy2GGOMv85GVXdOp5Pw8HBycnJwOBz+bkdEpPpzu+HbP8PS8Z7pS4ZBn7+BtWxXYjgLS+jx13mUuAz/G3klbaLqV2KzUluV5/NbzxoTEZGKUVoEXz4KGz73TF/3PFz2eLk2sfCnLEpchtaN6ykESZVQEBIRkfNXmAOTh8Cu78AaCAMmQJfbyr2ZOeuPjxbTRdJSNRSERETk/DgPwMe3eO4RZAuDQR9B62vLvZn84lIWbfGMKL5ew+aliigIiYjIuTu4xfPIjJx0z40Sh0yD2G7ntKnFaQcpLHET1yCEjrG6LlOqhoKQiIicmz3L4ZPboOAoNGjteWTGWe4RdCZzN554tpjFYqmoLkXOSEFIRETKL20OTLsXSgugaQ+4YyrUa3TOmysqdbFg8/GvxXR9kFQdBSERESmf1EkwawQYN1yQDLd+ALZ657XJH7YdIreolGiHnYviIiqkTZGyUBASEZGyMQYWvQCLX/BMX3Qn/PY1CDj/j5K5G058LWa16msxqToKQiIicnauEpj1BKz+yDN95Si45k9QAdfylLrczNvkeYh2skaLSRVTEBIRkTMrOgbT7oFt88BihX7/hJ73Vdjml+08wtH8EhrUs9GrRYMK265IWSgIiYjIrzuWBR/fCgfWQGCI53qgdn0rdBdzNhwAoE+HaAIDyvYoDpGKoiAkIiKnd2gbfDwQju6C0IaekWHNelboLtxuwzcb9bWY+I+CkIiInGrPip/vEXQEIlvAnV9Aw9YVvptV6Uc5mFtE/eBALmt97sPvRc6VgpCIiPj6aTZ8dp/nHkGxF3nOBIVFnXW1Epeb3Yfz2ZZ1jPQjebSLcXBFm0ZnHAU25+fRYkkXRmML1NdiUvUUhERE5IQV/4HZf/j5HkF94JYPwB7mU5JfXMr2rDy2HcxlW9axn38+xq5DeZS6jU9t84ah3JnQnFt7NiMi1OazzBhzYti8vhYTP1EQEhERzz2CFvwVvvunZ/qiu+C3r55yj6APU3bxt683U1zqPu1mQm0BtG4cRmxEMD9uP8zuw/n8ffZmXv42jRu6xnJ3YnO6NIsAYMM+J/uyCwgJCuDKCxpX4psT+XUKQiIidV1pMcwYDuumeKavegaufuaUewSNX7iNl75JA6BhPRuto8JoExVGm8Zh3p+bOIK9X4XlF5cyY81+PkzZzaYDTj5L3ctnqXvp2iycOy9pzk8ZuQBc074xIbaAqnu/IiexGGPM2cvqJqfTSXh4ODk5OTgcehKyiNRChTkw5U7YuQQsAXDDa9D9Lp8SYwz/mJvG24u3A/B47wsYkXRBmR+MaoxhVXo2/126m6/XHaDY5Xs26fXBF3Fj19iKeT8ilO/zW2eERETqqpy9nnsEZW0CWxjcNgnaJPmUuN2GsTM28tHS3QD86TcX8uCVrcq1G4vFQo/mkfRoHsmf+13IlJV7+HhpOvuyCwizB3Jt+7NfiC1SWXRG6Ax0RkhEaq2MDZ4QlLsfwmJgyFRo0tWnpNTl5qnP1vHF6n1YLPD3AZ25IyG+QnbvchuW7ThMwzA77WLqV8g2RY7TGSEREfl12xfClLugOBcat4ch0yDCN+AUlbp4/NM1zN2YQYDVwiu3daV/t6YV1kKA1cKlbXTfIPE/BSERkbpkzScw43fgLoXml8Pt/4WQSJ+SgmIXD/83lSVbDmILtDL+ju5c1yHaTw2LVC4FIRGROmDu+gME/fAyvTPeA8DZpj+2gW8THBLqU+csLOH+iStYsesoIUEBvDe0J5fpzI3UYgpCIiK13Ka9h8mZ9iiDrAsBmFB6Ay9uuBWzYSFNwoNp3jCUFg3r0aJRPb5ed4D1+3KoHxzIxHsvpkdzPQ1eajcFIRGRWqw4L5v8ibcwyLoKF1Y+j3qcOe4kwg7lkVtYyoGcQg7kFLJ0xxHvOg3r2fjw/l50jA33Y+ciVUNBSESktsrZR/a/b6Rn6TYKsFNy03vc1vVGbsNzb5/s/BJ2Hs5j9+E8dh3KZ9fhPAB+d+0FtIkKO/O2RWoJBSERkdooYwPFHw4kKj+DgyacLb3f47KufbyLLRYLkfVsRNaz0T0+8gwbEqnd9KhfEZHaZtv/MO8nY8vPYKu7KW+2fpvLruxz9vVE6iCdERIRqU1WfQgzR2AxLn50deBP9mf4YmDS2dcTqaMUhEREagNjYMHf4LuXAfjCdTlPlzzEhMGXEFnP5ufmRKovBSERkWpsz5F8GtSzUc9+hn+uS4vgq2GwfhoAk4JuY2xhfwZ2jyNJN0IUOSMFIRGRamrm2v38fvJqIkNtPJF0AYN7xRMY8ItLO/OPeB6Xsft7sAbyVbOnGLulEzGOYMbc0ME/jYvUILpYWkSkGtp8wMlTn63DGDiSV8yzX22k72vfsXjLwRNFR3bAf/p4QpCtPhuv+Q+Pb+kEwD9u6UJ4SJCfuhepORSERESqmZz8Eh7+KJWCEhdXXNCI5/t3JDI0iK1Zxxj6/nLu+WA5e9cuhPeS4PBWcDQj/+45PPyj5ynbg3vFc1Xbxn5+FyI1g74aExGpRlxuw+NTVpN+JJ9mkSG8fvtFRNaz0b9rU15fsJUPU3ZRb+tMGu+aAJYSSqO7EnjnVP467yB7jxbQLDKEP/W70N9vQ6TGUBASEalGXv3fFhalHcQeaOXtO3t4R3yFhwbxbL8LGRY0gwYprwMwz9WDP2c+zvULDvHp8nQAXrylC2FnurBaRHzot0VEpJr4ZmMGbyzYBsALAzvTqelJz/pylcDXI2mw6kMA9re/h1czbiIzI49JKbsBuOfSFlzaWk+KFykPBSERkWpgW9Yxnpy6FvAEmpsuanZiYWEOTB0KOxaCxQrXv0BswsPMcBumrdzDv/63haj6wTx1fTs/dS9ScykIiYj4WW5hCQ9/tJJjRaX0atnA9xqf7D3wyW2QtQmCQuGW96FdXwACrBZu7xXPoIvjMAasVouf3oFIzaUgJCLiR2634Q/T1rL9YB4xjmDG39GdoOP3Ctq3Cj69HY5lQlgM3DEFYrudsg2LxYJFGUjknCgIiYj40YTF2/lmYya2ACsT7uxO4/p2z4JNM+CLh6C0AKI6wpCpEN7szBsTkXIr932ElixZwg033EBsbCwWi4Uvv/zSZ/k999zz8/+dnHhdf/31PjVHjhxhyJAhOBwOIiIiuP/++zl27JhPzbp167jiiisIDg4mLi6OF1988ZRepk2bRvv27QkODqZz587Mnj3bZ7kxhjFjxtCkSRNCQkJISkpi69at5X3LIiKVYlFaFi9/mwbAX/p35KL4SM8zw75/Fabe5QlBba6D++YqBIlUknIHoby8PLp27cr48eN/teb666/nwIED3tenn37qs3zIkCFs3LiRefPmMWvWLJYsWcJDDz3kXe50OunTpw/NmzcnNTWVl156ieeee4533nnHW/Pjjz8yePBg7r//flavXs2AAQMYMGAAGzZs8Na8+OKLvP7667z99tssW7aMevXqkZycTGFhYXnftohIhdpzJJ/HJ6/BGBjcK47BveI9I8Nm/h7+N9ZTdPGDMHgyBDv826xIbWbOA2CmT5/uM2/o0KGmf//+v7rOpk2bDGBWrFjhnTdnzhxjsVjMvn37jDHGvPXWWyYyMtIUFRV5a55++mnTrl077/Rtt91m+vXr57PthIQE8/DDDxtjjHG73SYmJsa89NJL3uXZ2dnGbrebTz/9tEzvLycnxwAmJyenTPUiImXhdrvNkHeXmuZPzzL93/zeFJaUGpN/1JiJNxgz1mHMcxHGpEzwd5siNVZ5Pr8r5REbixYtIioqinbt2vHoo49y+PBh77KUlBQiIiLo2bOnd15SUhJWq5Vly5Z5a6688kpsNpu3Jjk5mbS0NI4ePeqtSUpK8tlvcnIyKSkpAOzcuZOMjAyfmvDwcBISErw1v1RUVITT6fR5iYhUtBlr9/P9tkPYAq28Oqgbdmc6/Oc62LkYgurB7Z/CJY/4u02ROqHCg9D111/Phx9+yPz58/nHP/7B4sWL6du3Ly6XC4CMjAyioqJ81gkMDKRBgwZkZGR4a6Kjo31qjk+frebk5Sevd7qaXxo3bhzh4eHeV1xcXLnfv4jImeQUlPDXWZsB+N01bWiRvwHe6w2HtoCjqed6oHbXn2UrIlJRKnzU2O233+79uXPnznTp0oXWrVuzaNEievfuXdG7q1CjR49m5MiR3mmn06kwJCIV6qVvfuLQsSJaNa7HIw1Xw6Th4CqCJl1h8BRwNPF3iyJ1SqU/fb5Vq1Y0atSIbds8t42PiYkhKyvLp6a0tJQjR44QExPjrcnMzPSpOT59tpqTl5+83ulqfslut+NwOHxeIiIVZXX6UT5elg4YJrVaSNCXD3pCULt+cO8chSARP6j0ILR3714OHz5MkyaeX/DExESys7NJTU311ixYsAC3201CQoK3ZsmSJZSUlHhr5s2bR7t27YiMjPTWzJ8/32df8+bNIzExEYCWLVsSExPjU+N0Olm2bJm3RkSkqpS63Pxp+gZsppgvot4nbu2rngWJw2HQR2Cr59f+ROqqcgehY8eOsWbNGtasWQN4Lkpes2YN6enpHDt2jFGjRrF06VJ27drF/Pnz6d+/P23atCE5ORmACy+8kOuvv54HH3yQ5cuX88MPPzB8+HBuv/12YmNjAbjjjjuw2Wzcf//9bNy4kSlTpvDaa6/5fG31+OOPM3fuXP75z3/y008/8dxzz7Fy5UqGDx8OeO60OmLECP72t78xY8YM1q9fz913301sbCwDBgw4z8MmIlI+E3/cRdaBPUwN/jvdnfPBGgg3vAbJfwdrgL/bE6m7yjskbeHChQY45TV06FCTn59v+vTpYxo3bmyCgoJM8+bNzYMPPmgyMjJ8tnH48GEzePBgExYWZhwOh7n33ntNbm6uT83atWvN5Zdfbux2u2natKl54YUXTull6tSppm3btsZms5mOHTuar7/+2me52+02zz77rImOjjZ2u9307t3bpKWllfm9avi8iFSEfUfzzY3P/tvsGdPKMzx+XLwxOxb7uy2RWqs8n98WY4zxYw6r1pxOJ+Hh4eTk5Oh6IRE5Z2++PZ57DjxPmKUQ06A1ljumQqM2/m5LpNYqz+e3njUmIlJZjGHLVy/y6IFxBFgMebGXUu/OjyG0gb87E5GfVfrF0iIidZKrhJIZI2i75v8IsBjWNL6Revd9pRAkUs0oCImIVLSCo/DfgQStnojbWHg98B7aPvA+BNrOvq6IVCkFIRGRinRoG7yXBDsXk2fsPFgykg43/5FQe5C/OxOR09A1QiIiFWXHIph6NxTmcNDamLsLRhJ3YS+SOkSfdVUR8Q8FIRGRirDiPczsp7AYF7tDOzHwyDDybQ34z40d/d2ZiJyBgpCIyHkwrhKOfP4kDTdNwgJ87rqcPx55gCJs/Pm6tsRGhPi7RRE5AwUhEZFyMsbwU0Yu/1uVRuKqJ+npWovbWHipdBDvW/pzbado+ndrSnJHfSUmUt0pCImIlFFhiYuPUnbz6Yp0zKFtvBf0Mq2tB8gzdiY1+SMXJt7GqvZR1LPrn1aRmkK/rSIiZ+F2G75cs49/fruFfdkFXGrdwATba4Rb8sgPicEyeAqPxXfzd5sicg4UhEREzuCHbYf4v9mb2bjfCcBjYYv4g+s/WI0LmvUi9PaPISzKz12KyLlSEBIROY20jFzGzdnMorSDAETa4aOmn9Np/+eegi63e54eHxTsxy5F5HwpCImInCQjp5BX5qXxWepe3AYCrRYe6hnOE0f/TtCeHwAL9B4Dlz8BFou/2xWR86QgJCKCZyTYW4u288aCrRSWuAHo2ymGP10MzebcC9m7wRYGA9+Ddn393K2IVBQFIRER4ONl6bz0TRoAPZpH8sffXEiPghT4/EEoPgaRLWDwZIi60L+NikiFUhASkTpvw74cnp+5CYA/9GnLsKtbY/nhXzD/r4CBFlfAbR/qyfEitZCCkIjUac7CEh77eBXFLjdJF0Yz7PKmWL54EDZ85im4+AG4/gUI0ENTRWojBSERqbOMMTz92TrSj+TTNCKEV66PwjLxN7B/NVgDoe+LcPH9/m5TRCqRgpCI1FkTf9zFnA0ZBAVY+OA6C46ProNjGRDSwPNVWMsr/N2iiFQyBSERqZPW7Mnm/2ZvBuD9bltoO/vv4CqGqA5w+yfQoKWfOxSRqqAgJCJ1Tk5+CcM+XoXbVcr70dO5YuMXngXtfws3vQ32+v5tUESqjIKQiNQpxhienLaWvOwspoSOp2fOOs+Cq0fDlU+B1erfBkWkSikIiUid8t53O0n/aSUz7P8k3p0FQfXg5n/DhTf4uzUR8QMFIRGpM1J3H2XVNx8x3TaeepYiiGgOgz+F6I7+bk1E/ERBSETqhKPHCln94dNMCJoCgGl5FZZbJ+omiSJ1nIKQiNRoi9KyeHzyGqwWcIQE4QgOon5w4In/hgTRMLCYnqtH84DrRwCKez6Mre//QYD+CRSp6/SvgIjUWCUuN3+ZuYmcghIAjuaXnFLTwnKAd4Jeoa11H8UmkINX/4Om1zxQ1a2KSDWlICQiNda0lXvZeSiPhvVsTLqvF4UlLnILS3EWluAsKCFi32Ku2zyWYNcxsgMbsfXqCVx8eR9/ty0i1YiCkIjUSIUlLl6bvwWA4de2oVPT8BMLjYHv/gkb/gYYiEsg4raPuLh+tH+aFZFqS0FIRGqkST/uItNZRNOIEO5IiD+xoOgYfPkobJ7hme55H1z/Dwi0+adREanWFIREpMbJKSjhrUXbARh5XVvsgQGeBYe3w+QhcHAzWIOg38vQ4x7/NSoi1Z6CkIjUOO8s2U5OQQlto8MYcFFTz8yt/4PP74PCHAiLgUEfQVwv/zYqItWegpCI1ChZzkLe/34XAH/o044AC/DdKzD/ecBAs16eEFQ/xp9tikgNoSAkIjXKGwu2UVDi4qL4CK5rHQrThsKmrzwLe9wDfV+EQLtfexSRmkNBSERqjPTD+Xy6PB2AsYk2LO8lwaE0z/VAv3nRc2G0iEg5KAiJSI3xyrw0St2GEc220m3uI1DkhPpN4LaPIO5if7cnIjWQgpCI1Aib9juZuXYvIwM/4/eHvvTMjL8Ubp0Iuj+QiJwjBSERqRHemrOS9wJf4pqAtZ4ZCY9Cn79CQJB/GxORGk1BSESqvfWpPzBq98M0D8jCHRiM9YbXoesgf7clIrWAgpCIVGtm3VTazhyO3VrEEVsTGtw7FZp08XdbIlJLWP3dgIjIablKYO5oLF88iJ0ivnN3peT+hQpBIlKhyh2ElixZwg033EBsbCwWi4Uvv/zSZ7kxhjFjxtCkSRNCQkJISkpi69atPjVHjhxhyJAhOBwOIiIiuP/++zl27JhPzbp167jiiisIDg4mLi6OF1988ZRepk2bRvv27QkODqZz587Mnj273L2ISDWUmwGTboClbwHwRukAfrjkLaKjm/i5MRGpbcodhPLy8ujatSvjx48/7fIXX3yR119/nbfffptly5ZRr149kpOTKSws9NYMGTKEjRs3Mm/ePGbNmsWSJUt46KGHvMudTid9+vShefPmpKam8tJLL/Hcc8/xzjvveGt+/PFHBg8ezP3338/q1asZMGAAAwYMYMOGDeXqRUSqmV0/wNtXQHoKJYFhPFg8kncC7+CRq9v6uzMRqY3MeQDM9OnTvdNut9vExMSYl156yTsvOzvb2O128+mnnxpjjNm0aZMBzIoVK7w1c+bMMRaLxezbt88YY8xbb71lIiMjTVFRkbfm6aefNu3atfNO33bbbaZfv34+/SQkJJiHH364zL2cTU5OjgFMTk5OmepF5Dy43cb88Loxz0UaM9ZhSt5IMP2fn2SaPz3LvLlgq7+7E5EapDyf3xV6jdDOnTvJyMggKSnJOy88PJyEhARSUlIASElJISIigp49e3prkpKSsFqtLFu2zFtz5ZVXYrPZvDXJycmkpaVx9OhRb83J+zlec3w/Zenll4qKinA6nT4vEakCRbmeR2V8+2cwLkyX2xgR9jJr8hrSLro+91/e0t8dikgtVaFBKCMjA4DoaN+bm0VHR3uXZWRkEBUV5bM8MDCQBg0a+NScbhsn7+PXak5efrZefmncuHGEh4d7X3FxcWV41yJyXg6mwbvXep4XZg2C37zMtLhnmfVTDkEBFv41qBvBQQH+7lJEaimNGjvJ6NGjycnJ8b727Nnj75ZEarcNX8A718ChLVA/Fu6dw542Q/jLzE0APNmnHR1iHX5uUkRqswoNQjExMQBkZmb6zM/MzPQui4mJISsry2d5aWkpR44c8ak53TZO3sev1Zy8/Gy9/JLdbsfhcPi8RKQS/Dw0ns/uhZI8aHklPLwEV9OejJy6hrxiF71aNODBK1r5u1MRqeUqNAi1bNmSmJgY5s+f753ndDpZtmwZiYmJACQmJpKdnU1qaqq3ZsGCBbjdbhISErw1S5YsoaSkxFszb9482rVrR2RkpLfm5P0crzm+n7L0IiJ+kLMPJvbzDo3n8ifgzukQ1ph3luxgxa6jhNkD+edtXQmwWvzbq4jUfuW9Ejs3N9esXr3arF692gDmlVdeMatXrza7d+82xhjzwgsvmIiICPPVV1+ZdevWmf79+5uWLVuagoIC7zauv/56c9FFF5lly5aZ77//3lxwwQVm8ODB3uXZ2dkmOjra3HXXXWbDhg1m8uTJJjQ01Pz73//21vzwww8mMDDQvPzyy2bz5s1m7NixJigoyKxfv95bU5ZezkSjxkQq2Lb5xvyjpTFjHcb8X5wxm2Z6F23Yl23a/PFr0/zpWWbqinQ/NikiNV15Pr/LHYQWLlxogFNeQ4cONcZ4hq0/++yzJjo62tjtdtO7d2+Tlpbms43Dhw+bwYMHm7CwMONwOMy9995rcnNzfWrWrl1rLr/8cmO3203Tpk3NCy+8cEovU6dONW3btjU2m8107NjRfP311z7Ly9LLmSgIiVQQl8uYhS8YMzbcE4ImXG7M4e3exQXFpea6VxaZ5k/PMg99uMK43W7/9SoiNV55Pr8txhjjr7NR1Z3T6SQ8PJycnBxdLyRyrvIOwxcPwvafv6buPhT6vghBwd6Sv83axHvf76RRmJ1vRlxBwzC7n5oVkdqgPJ/feuiqiFSePSs89wdy7oPAEPjtK9DtDp+SH7cd4r3vdwLw4i2dFYJEpEopCIlIxTMGlr8D3/wJ3CXQoDUM+giiO/qU5RSU8IdpawG4IyGea9tHn25rIiKVRkFIRCpWoRNm/h42TvdMdxgAN74Bwaeenn5uxkb25xTSomEof/rNhVXbp4gICkIiUpEOrPN8FXZkB1gDoc/fIeFhsJw6DH7Wuv1MX70PqwVeGdSNenb9cyQiVU//8ojI+TMGUj+AOc+AqwgczeDWDyCu12nLv1i1l2e+WA/AsGva0D0+siq7FRHxUhASkfNTlAszR8CGzzzTba+HARMgtMEppaUuN/+Y+xPvfue5OPq6DtH8vvcFVdisiIgvBSEROXcZGzxfhR3eBpYASBoLib8D66k3rc/JL+F3k1ezZMtBAH53bRueSGqLVXePFhE/UhASkfIzBlZ9CHOegtJCcDSFWz6A+ITTlm/LOsaDH65k56E8QoICePnWrvTr0qSKmxYROZWCkIiUT9Ex+HokrJvimW5zHdz0b6jX8LTlC37K5PFP15BbVErTiBDeubsHHWPDq7BhEZFfpyAkImWXuRGm3QOHtni+Crv2z3DZiNN+FWaMYcLi7bz0TRrGQK+WDZgwpLtumCgi1YqCkIic3fFRYXNHe74Kq98Ebnkfml962vKCYhdPf76OGWv3AzAkIZ6xN3TEFnhqYBIR8ScFIRE5s8IcmPn4iRsktrkObnob6jU6pTS3sIQZa/cz8YddbM06RqDVwnM3duTOS5pXcdMiImWjICQiv25fKnx2Hxzd5blBYu+xkDjc56swYwyr0rOZsiKdmWsPUFDiAqBBPRsThnQnodXprx0SEakOFIRE5FTGwNK3YN5Yz7PCIuI9o8Ka9fSWZOcX88WqfUxekc6WzGPe+a0b1+P2i+O5pUczIuvZ/NG9iEiZKQiJiK/8I/Dlo7Blrmf6whs9zwoLiQBgxa4jfJSym7kbMygudQNgD7TSr0sTBveKp2fzSCyneaSGiEh1pCAkIifs/hE+fwCc+yDADtf/H/S83/ussEk/7mLsjI3e8gubOBjcK47+3ZoSHhLkr65FRM6ZgpCIgNsF3/0TFo0D44aGbeDWiRDT2Vsya91+npvpCUEDusVy3+Ut6dw0XGd/RKRGUxASqety9sIXD8HuHzzTXW6Hfv8Ee5i35Mfthxg5ZS3GwF2XNOf5/h0VgESkVlAQEqnLNs+Er4ZDYTbYwqDfK9B1kE/Jxv05PPRhKsUuN307xfDcjQpBIlJ7KAiJ1EXF+fDNHz03SQSI7Q4D34OGrX3K9hzJ554PVnCsqJSElg3416BuBOghqSJSiygIidQ1mRs99wY6+JNn+rIRcM2fINB3qPvhY0Xc/f5yDuYW0T6mPu/c3ZPgoICq71dEpBIpCInUFcbAivfgmz+BqwjCoj0PS219zSmleUWl3DdxBTsP5dE0IoRJ9/XSqDARqZUUhETqgvwj8NUwSJvtmb6gDwyYcNrHZBSXunn041Ws3ZtDZGgQH97fi2hHcBU3LCJSNRSERGq77Qtg+qNwLAMCbHDd85DwiPfeQCdzuw1Pf76OJVsOEhIUwPv3XEzrxmGn2aiISO2gICRSW5UWwfznIeVNz3SjtjDwP9Cky6+u8sLcn5i+eh+BVgtv3dmdi+Ijq6hZERH/UBASqY2yNnvuEJ25wTPd837o8zewhZ5SWlDsYs6GA0xZsYdlO48A8I+BXbimXVRVdiwi4hcKQiK1iTGw/F2Y9yyUFkJoI+j/JrTr+4syw5o92UxduZdZa/eTW1QKeL4t+9NvLmRgj2b+6F5EpMopCInUFseyPBdEb/3WM90mCfq/BfWjvSUHc4v4cvU+pq7cw9asE0+Mj2sQwm094ri5RzOaRoRUdeciIn6jICRSG6TN9YSg/EOeh6X2+Rv0etB7QfTG/Tm89r+tLPgpi1K3ASA4yMpvOjXh1p5xJLRsgFU3ShSROkhBSKQmK86Db5+Flf/xTEd3gpvfhegO3pKFaVk89t9VFJS4AOgWF8FtPeP4bdcmOIJ1byARqdsUhERqqr0rPQ9LPbLdM33JMOg9BoJO3PNn6so9jP5iPS634YoLGvHsbzvQNrq+nxoWEal+FIREahpXCSx5CZa8DMYF9WNhwHhofa23xBjDmwu28c95WwC4+aKmvDCwC7ZAq7+6FhGplhSERGqSg1tg+kOwf7VnutMt0O9lCDlxvx+X2zDmqw18vCwdgEevbs1Tye30xHgRkdNQEBKpCdxuWPEuzBvjGRYfHA79XoHOt/iUFZa4+P2nq/l2UyYWCzx3Q0eGXtrCPz2LiNQACkIi1Z1zP3z5GOxY6JludQ0MeAscsT5lR/OKeeDDlaTuPoot0Mprg7rRt3MTPzQsIlJzKAiJVGfrP4OvR0JhDgSGeJ4TdvEDYPW91mfv0XyGvr+c7QfzcAQH8t7Qi+nVsoGfmhYRqTkUhESqo7xD8PWTsOlLz3Rsd7j5HWh0wSmlm/Y7ueeD5WTlFtEkPJhJ9/XSyDARkTJSEBKpbjbPglkjIO8gWAPhij/AlX+AgFPv+bNhXw53vLsUZ2Ep7aLrM/G+i2kSrjtDi4iUlYKQSHVRcBTmPA3rpnimG18IN02A2ItOW775gJM7/7MMZ2Ep3eMj+ODeXoSH6AaJIiLloSAkUh1snQczfge5B8BihUt/D9f8EQLtpy/PzOXO95aRnV9C17gIJt7XS3eJFhE5BwpCIv5U6IRv/wSrPvRMN2wDAyZAXK9fXWX7wWMMfncZh/OK6dTUwYf3KgSJiJyrCr/N7HPPPYfFYvF5tW/f3ru8sLCQYcOG0bBhQ8LCwhg4cCCZmZk+20hPT6dfv36EhoYSFRXFqFGjKC0t9alZtGgR3bt3x26306ZNGyZOnHhKL+PHj6dFixYEBweTkJDA8uXLK/rtipy7HYthwqUnQtAlj8HD350xBO06lMcd7y7l0LEi2sfU56P7EggPVQgSETlXlXK//Y4dO3LgwAHv6/vvv/cue+KJJ5g5cybTpk1j8eLF7N+/n5tvvtm73OVy0a9fP4qLi/nxxx+ZNGkSEydOZMyYMd6anTt30q9fP6655hrWrFnDiBEjeOCBB/jmm2+8NVOmTGHkyJGMHTuWVatW0bVrV5KTk8nKyqqMtyxSdkW5MOsJ+PBGyNkDEc3hnq/h+nFgC/3V1fYcyeeOd5eS6SzigqgwPn4ggch6tipsXESkFjIVbOzYsaZr166nXZadnW2CgoLMtGnTvPM2b95sAJOSkmKMMWb27NnGarWajIwMb82ECROMw+EwRUVFxhhjnnrqKdOxY0efbQ8aNMgkJyd7p3v16mWGDRvmnXa5XCY2NtaMGzeuzO8lJyfHACYnJ6fM64ic0db/GfNKR2PGOjyvmSOMKcw962r7juaby16Yb5o/Pctc8/JCk+ksqIJmRURqpvJ8flfKGaGtW7cSGxtLq1atGDJkCOnpnmcepaamUlJSQlJSkre2ffv2xMfHk5KSAkBKSgqdO3cmOjraW5OcnIzT6WTjxo3empO3cbzm+DaKi4tJTU31qbFarSQlJXlrTqeoqAin0+nzEqkQBdnw1TD4780/nwWKh7tnwG//BfawM66akVPI4HeXsvdoAS0ahvLpg5cQVT/4jOuIiEjZVHgQSkhIYOLEicydO5cJEyawc+dOrrjiCnJzc8nIyMBmsxEREeGzTnR0NBkZGQBkZGT4hKDjy48vO1ON0+mkoKCAQ4cO4XK5TltzfBunM27cOMLDw72vuLi4czoGIj7S5sJbl8Dq/3qmez0Mj6ZAq6vOumpWbiF3vLeU3YfziWsQwicPXkK0QyFIRKSiVPiosb59+3p/7tKlCwkJCTRv3pypU6cSElK9b/Q2evRoRo4c6Z12Op0KQ3Lu8o/A3GdO3BeoQWvo/yY0v/S05cWlbnYeyiMtM5etmblsycxlVXo2B3OLiA0P5pMHLiE2onr/DomI1DSVPnw+IiKCtm3bsm3bNq677jqKi4vJzs72OSuUmZlJTEwMADExMaeM7jo+quzkml+ONMvMzMThcBASEkJAQAABAQGnrTm+jdOx2+3Y7ae/b4tIuWya4XlERl6W575AicPg6j96L4YuKnWxZMshNu7PYWvmMdIyc9l1KI9StzllU03Cg/n0oUuIa/DrF1KLiMi5qfQgdOzYMbZv385dd91Fjx49CAoKYv78+QwcOBCAtLQ00tPTSUxMBCAxMZG///3vZGVlERUVBcC8efNwOBx06NDBWzN79myf/cybN8+7DZvNRo8ePZg/fz4DBgwAwO12M3/+fIYPH17Zb1nqstwMmD0KNs/wTDdq53lSfLOeAOw4eIzJK/bwWepejuQVn7J6fXsgF0SH0Ta6vvd1UXwE9ey65ZeISGWo8H9d//CHP3DDDTfQvHlz9u/fz9ixYwkICGDw4MGEh4dz//33M3LkSBo0aIDD4eB3v/sdiYmJXHLJJQD06dOHDh06cNddd/Hiiy+SkZHBn//8Z4YNG+Y9W/PII4/w5ptv8tRTT3HfffexYMECpk6dytdff+3tY+TIkQwdOpSePXvSq1cvXn31VfLy8rj33nsr+i2LgDGe+wF9+ywU5YAlAC57HK56miJLEHPX7OPT5eks3XHEu0qMI5jLL2hEu+j6XBAdRruY+sQ4grFYLH58IyIidUuFB6G9e/cyePBgDh8+TOPGjbn88stZunQpjRs3BuBf//oXVquVgQMHUlRURHJyMm+99ZZ3/YCAAGbNmsWjjz5KYmIi9erVY+jQoTz//PPempYtW/L111/zxBNP8Nprr9GsWTPee+89kpOTvTWDBg3i4MGDjBkzhoyMDLp168bcuXNPuYBa5Lwd2gYzH4fdP98vK/YiuOF1tge2YvK3O/gsdS9H80sAsFrgmnZRDO4Vz9XtGhMYUCkDN0VEpIwsxphTL0oQwHOxdHh4ODk5OTgcDn+3I9WNqwR+eA0WvwiuIkxgKNs6j2BO6I18vyOb5TtPnP1pEh7MbT3jGHRxnC54FhGpZOX5/NaFByLnIGfbUgJm/Z6w7DQAllq68Ye8e9ibEgXsADxnf65t7zn7c1Vbnf0REamOFIREyqig2MV/Fqyn8YqXuaV0FgEWwxETxvMld/Ol+zIsFgttosLo0jSczs3Cub5TDE3CdfZHRKQ6UxASOQtjDHM2ZLB4xkR+X/wuTS2HwQLzAq9mYYsRdGrenDuaRdAh1kGYRneJiNQo+ldb5Ay2Zuby5vQF/Hbfa/wjIBUskBfaFH77L67rkMx1/m5QRETOi4KQyGk4C0t449vNWJe/zbiAzwgNKMJlCcCd+HvqXf3UGZ8SLyIiNYeCkMhJ3G7D56v2MmfOV4wqeZsLA/cAUBibQPCA1wiIutDPHYqISEVSEBL52er0o7wyYxl9M97m/cCFYIUSWyRBff9OcLc7QDc6FBGpdRSEpM5L3X2UN+enEbltOv8K+oRGgU4AXF3vJCj5rxDawM8diohIZVEQkjprxa4jvD5/K4e3reT5oIn0tG0BoLRhOwJvfJWAX3lKvIiI1B4KQlLnpGw/zOvzt7Jpx26eDJzGENv/CLAY3EGhWK96isBLhkGgzd9tiohIFVAQkjrBGMOP2w/z2vytrNh5iEEBixhvn0wDyzFPQaeBWK/7K4Q39WufIiJStRSEpFbbcySfuRsymLluP+v25tDVso2vbJPoYt3uKWh8IfzmJWh5hX8bFRERv1AQklpnW1YuczdkMGdDBhv3ey58boCTl2xTuNW60FNkd8DVo6HXgxAQ5MduRUTEnxSEpMYzxrDpgNMbfrZlHfMuC7a6+FPj77kt7xPspbmemV3vgKTnoH60fxoWEZFqQ0FI/KKg2MXWrFxsgVbq2QIJsQVQzxZIcJAVy2nu13OsqJT92QU/vwo9/83xTO86lE+Gs9BbGxRg4fLWDbkvaguXbn+FgKOep8ET0xl+8zLEX1JVb1NERKo5BSGpUlszc/l4WTqfr9pLbmHpKcstFggNCiDUHkioLYCgACtZzkKcp6k9WXCQlavbRnF9pxiSGh4ibNEYWLnIs7BeFPR+FroNAWtAJbwrERGpqRSEpNIVlbqYuyGDj5els3znEe/8BvVsWC2QV+SioMQFgDGQV+wir9h1ynbCQ4KIjQghNjzY89+IEGIjPD93jHUQWpINC/8OMyaCcUOADRKHweUjIdhRRe9WRERqEgUhqTR7juTzyfJ0pq7Yw+G8YgACrBaSLozizkuac1nrRlitnq/B3G5DQYmLvOJSCopd5BW5yC8upbjUTeP6dppEhBBm/5W/rqVFsOwtWPISFHkujqZDf7jueYhsUQXvVEREaioFIalQhSUuFqVlMXnFHhZvOYgxnvkxjmBu7xXH7RfHExMefMp6VquFevZA6v1a2DkdY2DTl/C/v8DRnZ55TbpC8jhocdn5vxkREan1FITkvJW43Pyw7RAz1u7n242ZHCs6cT3PFRc04s5LmtO7fRSBAdaK2+mu72HeGNiX6pkOi4beY6HrYLBW4H5ERKRWUxCSc+J2G1bsOsLMdfuZvT6DIz9/9QUQGx7Mjd2aMrhXHM0b1qvYHWdugv89B1u/8UwH1YNLfweXDgd7/Yrdl4iI1HoKQlIuP2U4+Tx1L7PWHeBAzokh6w3r2fhN5ybc2C2WHvGR3mt/KkzOPlj4f7D2E8+F0JYA6HEPXPW07gckIiLnTEFIyqSwxMW/5m3hne92eK/7qW8PJLlTDDd2jeXS1g0r9quv4wqy4ftXYNm/ofTn4HXhjZ6vwRq1qfj9iYhInaIgJGe1bm82T05dy9af79h8XYdoBnZvxtXtGhMcVEn35SnOg+Xvwg+vQsFRz7z4Sz0jweIurpx9iohInaMgJL+quNTNmwu3MX7hNlxuQ6MwOy/c3JmkDpX4VVRJIax833MWKO+gZ17j9p5HYrS93nPHRRERkQqiICSn9VOGk5FT1rLpgOe+PL/t0oS/9u9EZD1b5eywtBhWfwhLXobcA555kS081wB1vg0C9FdVREQqnj5dxEepy8073+3gX/O2UOIyRIYG8dcBnfhtl9jK2aGrBNZ+Cotfgpx0zzxHM7hqlOeRGHoyvIiIVCIFIfHafvAYT05dy5o92QAkXRjN/93ciaj6p94A8by5XbB+Gix64cTNEMNi4Mo/QPe7IdBe8fsUERH5BQUhYe/RfN5dsoPJK/ZQVOqmvj2QsTd2ZGD3pqd9Evx5KS2GdVPg+3/Bke2eeaGN4PIn4OL7ISikYvcnIiJyBgpCddi2rFwmLNrBV2v2Uer2jIm/4oJG/GNgF2IjKjiQFOfDqg/hx9fBuc8zLyQSLv099HoI7GEVuz8REZEyUBCqg9btzeathdv5ZlOG955Al7VpyLCr25DYumHFngUqzIEV70HKW5B/yDMvLMZzJ+ge9yoAiYiIXykI1RHGGJbuOMJbi7bx3dZD3vl9OkTz2DVt6BYXUbE7zDsESyd47gVUlOOZF9EcLh8BXe+AoEq47khERKScFIRquRKXm283ZvKf73ewKj0bgACrhf5dY3nk6ta0ja7g53Md3u65C/SqD6G0wDOvcXu4fCR0Gqhh8CIiUq3oU6mWysotZPLyPXy8bDeZziIAbIFWBvWM46ErWxHXILTidmYM7PrOcwYobQ7w8/dtTbp5RoG166cnwouISLWkIFSLGGNYlZ7Nhym7mL3+ACUuTyBpFGZjcK947kpsXrFD4UuLYP1nngCUuf7E/Av6wCWPQqtrdCdoERGp1hSEaoHCEhcz1uxnUsouNu53eud3j49g6KUtuL5TDPbACnwm2LEsz2MwVrx34jEYQaHQdTAkPAKN21bcvkRERCqRglANdvhYEe//sJOPl6WTnV8CgD3Qyo1dY7k7sQWdm4VX3M6MgT3LIXUibPgMXMWe+Y6m0OtB6D4UQhtU3P5ERESqgIJQDZTpLOSdJTv4ZFk6BSUuAJpFhnDXJc25rWdcxT4PLP+I5xEYqz6Egz+dmN+0B1zyGHTor8dgiIhIjaUgVIPsOZLPhMXb+WzlXopdbgA6Nw1n2DWtua5DDAHWCroex+2GXUs84WfzzBNnfwJDoONN0PNeiOtVMfsSERHxIwWhGmBbVi5vLdzOV2v34/r5DtC9WjRg2LVtuPKCRhV3A8TcDFjzsScAHd11Yn6Trp7nf3W+FYIr8Os2ERERP1MQqqaMMazek8173+1gzoYTd4C+4oJGDL+mDQmtGlbMjvIOw08zYcMXniHwxnOmCbvDE3y63w2x3SpmXyIiItVMnQhC48eP56WXXiIjI4OuXbvyxhtv0KtX9fxq56cMJzPW7Gfmuv3sOVLgnd+nQzTDrmlD14q4A3TBUdg8CzZOhx2LwLhOLItL8Fz43HEA2Oqd/75ERESqsVofhKZMmcLIkSN5++23SUhI4NVXXyU5OZm0tDSioqL83R4Auw/nMXPtfmas3c+WzGPe+SFBAfTtFMPDV7WmXcx53gG6MAd+mu0JP9sXgLvkxLKYLp5rfzreBA1ant9+REREahCLMce/dKmdEhISuPjii3nzzTcBcLvdxMXF8bvf/Y5nnnnmjOs6nU7Cw8PJycnB4XBUaF8ZOYXMWrefmWv3s3Zvjne+LcDKVe0ac2PXWHpfGEWo7RyzqtsNGWth+0LYsRDSl5646BkgupPnrE+Hm6BRm/N7MyIiItVIeT6/a/UZoeLiYlJTUxk9erR3ntVqJSkpiZSUlFPqi4qKKCoq8k47nc5TairC91sPcdf7y7zX/VgtcFmbRtzQNZbkjjGEh5zjcPSjuz2hZ/tC2LnY8xXYyRq1g043e878NG53fm9CRESkFqjVQejQoUO4XC6io6N95kdHR/PTTz+dUj9u3Dj+8pe/VHpf3ZtHEBoUwIVNHNzYLZa+nZrQuL69fBspKfTc1ydrE+xd4Qk/R3f61tgd0OIKaH0NtLoaGl1QYe9BRESkNqjVQai8Ro8ezciRI73TTqeTuLi4Ct9PqC2QH5/pTXhoGc78uN2QvQsyN0HmRsja6Pn5yPYTI7yOswRAs4t/Dj7XeG56qKe9i4iI/Kpa/SnZqFEjAgICyMzM9JmfmZlJTEzMKfV2ux27vZxnZs5FbibhP7wGpYUnXiWFp5kugNxMKMk7/XZCIiGqI8R0hpZXQovLIbhir2USERGpzWp1ELLZbPTo0YP58+czYMAAwHOx9Pz58xk+fLj/GitywtLxZa8PsHseZBrVEaI7QnQHz8/1Y/R0dxERkfNQq4MQwMiRIxk6dCg9e/akV69evPrqq+Tl5XHvvff6r6nQhnDZ455HVgTaIejn/55uOrQhNGilr7hEREQqQa3/dB00aBAHDx5kzJgxZGRk0K1bN+bOnXvKBdRVKrQBXPe8//YvIiIiQB24j9D5qMz7CImIiEjlKM/nt7WKehIRERGpdhSEREREpM5SEBIREZE6S0FIRERE6iwFIREREamzFIRERESkzlIQEhERkTpLQUhERETqLAUhERERqbMUhERERKTOUhASERGROktBSEREROqsWv/0+fNx/Hm0TqfTz52IiIhIWR3/3C7Lc+UVhM4gNzcXgLi4OD93IiIiIuWVm5tLeHj4GWsspixxqY5yu93s37+f+vXrY7FYyrye0+kkLi6OPXv24HA4KrFDAR3vqqbjXbV0vKuWjnfVqqzjbYwhNzeX2NhYrNYzXwWkM0JnYLVaadas2Tmv73A49ItUhXS8q5aOd9XS8a5aOt5VqzKO99nOBB2ni6VFRESkzlIQEhERkTpLQagS2O12xo4di91u93crdYKOd9XS8a5aOt5VS8e7alWH462LpUVERKTO0hkhERERqbMUhERERKTOUhASERGROktBSEREROosBaEKNn78eFq0aEFwcDAJCQksX77c3y1VO0uWLOGGG24gNjYWi8XCl19+6bPcGMOYMWNo0qQJISEhJCUlsXXrVp+aI0eOMGTIEBwOBxEREdx///0cO3bMp2bdunVcccUVBAcHExcXx4svvnhKL9OmTaN9+/YEBwfTuXNnZs+eXeHv19/GjRvHxRdfTP369YmKimLAgAGkpaX51BQWFjJs2DAaNmxIWFgYAwcOJDMz06cmPT2dfv36ERoaSlRUFKNGjaK0tNSnZtGiRXTv3h273U6bNm2YOHHiKf3U9t+RCRMm0KVLF+8N4hITE5kzZ453uY515XrhhRewWCyMGDHCO0/HvOI899xzWCwWn1f79u29y2vksTZSYSZPnmxsNpt5//33zcaNG82DDz5oIiIiTGZmpr9bq1Zmz55t/vSnP5kvvvjCAGb69Ok+y1944QUTHh5uvvzyS7N27Vpz4403mpYtW5qCggJvzfXXX2+6du1qli5dar777jvTpk0bM3jwYO/ynJwcEx0dbYYMGWI2bNhgPv30UxMSEmL+/e9/e2t++OEHExAQYF588UWzadMm8+c//9kEBQWZ9evXV/oxqErJycnmgw8+MBs2bDBr1qwxv/nNb0x8fLw5duyYt+aRRx4xcXFxZv78+WblypXmkksuMZdeeql3eWlpqenUqZNJSkoyq1evNrNnzzaNGjUyo0eP9tbs2LHDhIaGmpEjR5pNmzaZN954wwQEBJi5c+d6a+rC78iMGTPM119/bbZs2WLS0tLMH//4RxMUFGQ2bNhgjNGxrkzLly83LVq0MF26dDGPP/64d76OecUZO3as6dixozlw4ID3dfDgQe/ymnisFYQqUK9evcywYcO80y6Xy8TGxppx48b5savq7ZdByO12m5iYGPPSSy9552VnZxu73W4+/fRTY4wxmzZtMoBZsWKFt2bOnDnGYrGYffv2GWOMeeutt0xkZKQpKiry1jz99NOmXbt23unbbrvN9OvXz6efhIQE8/DDD1foe6xusrKyDGAWL15sjPEc36CgIDNt2jRvzebNmw1gUlJSjDGe8Gq1Wk1GRoa3ZsKECcbhcHiP8VNPPWU6duzos69BgwaZ5ORk73Rd/R2JjIw07733no51JcrNzTUXXHCBmTdvnrnqqqu8QUjHvGKNHTvWdO3a9bTLauqx1ldjFaS4uJjU1FSSkpK886xWK0lJSaSkpPixs5pl586dZGRk+BzH8PBwEhISvMcxJSWFiIgIevbs6a1JSkrCarWybNkyb82VV16JzWbz1iQnJ5OWlsbRo0e9NSfv53hNbf/zysnJAaBBgwYApKamUlJS4nMs2rdvT3x8vM8x79y5M9HR0d6a5ORknE4nGzdu9Nac6XjWxd8Rl8vF5MmTycvLIzExUce6Eg0bNox+/fqdclx0zCve1q1biY2NpVWrVgwZMoT09HSg5h5rBaEKcujQIVwul88fLkB0dDQZGRl+6qrmOX6sznQcMzIyiIqK8lkeGBhIgwYNfGpOt42T9/FrNbX5z8vtdjNixAguu+wyOnXqBHiOg81mIyIiwqf2l8f8XI+n0+mkoKCgTv2OrF+/nrCwMOx2O4888gjTp0+nQ4cOOtaVZPLkyaxatYpx48adskzHvGIlJCQwceJE5s6dy4QJE9i5cydXXHEFubm5NfZY6+nzInXIsGHD2LBhA99//72/W6nV2rVrx5o1a8jJyeGzzz5j6NChLF682N9t1Up79uzh8ccfZ968eQQHB/u7nVqvb9++3p+7dOlCQkICzZs3Z+rUqYSEhPixs3OnM0IVpFGjRgQEBJxydXxmZiYxMTF+6qrmOX6sznQcY2JiyMrK8lleWlrKkSNHfGpOt42T9/FrNbX1z2v48OHMmjWLhQsX0qxZM+/8mJgYiouLyc7O9qn/5TE/1+PpcDgICQmpU78jNpuNNm3a0KNHD8aNG0fXrl157bXXdKwrQWpqKllZWXTv3p3AwEACAwNZvHgxr7/+OoGBgURHR+uYV6KIiAjatm3Ltm3bauzfbwWhCmKz2ejRowfz58/3znO73cyfP5/ExEQ/dlaztGzZkpiYGJ/j6HQ6WbZsmfc4JiYmkp2dTWpqqrdmwYIFuN1uEhISvDVLliyhpKTEWzNv3jzatWtHZGSkt+bk/RyvqW1/XsYYhg8fzvTp01mwYAEtW7b0Wd6jRw+CgoJ8jkVaWhrp6ek+x3z9+vU+AXTevHk4HA46dOjgrTnT8azLvyNut5uioiId60rQu3dv1q9fz5o1a7yvnj17MmTIEO/POuaV59ixY2zfvp0mTZrU3L/f5b68Wn7V5MmTjd1uNxMnTjSbNm0yDz30kImIiPC5Ol48oztWr15tVq9ebQDzyiuvmNWrV5vdu3cbYzzD5yMiIsxXX31l1q1bZ/r373/a4fMXXXSRWbZsmfn+++/NBRdc4DN8Pjs720RHR5u77rrLbNiwwUyePNmEhoaeMnw+MDDQvPzyy2bz5s1m7NixtXL4/KOPPmrCw8PNokWLfIa85ufne2seeeQREx8fbxYsWGBWrlxpEhMTTWJionf58SGvffr0MWvWrDFz5841jRs3Pu2Q11GjRpnNmzeb8ePHn3bIa23/HXnmmWfM4sWLzc6dO826devMM888YywWi/n222+NMTrWVeHkUWPG6JhXpCeffNIsWrTI7Ny50/zwww8mKSnJNGrUyGRlZRljauaxVhCqYG+88YaJj483NpvN9OrVyyxdutTfLVU7CxcuNMApr6FDhxpjPEPon332WRMdHW3sdrvp3bu3SUtL89nG4cOHzeDBg01YWJhxOBzm3nvvNbm5uT41a9euNZdffrmx2+2madOm5oUXXjill6lTp5q2bdsam81mOnbsaL7++utKe9/+crpjDZgPPvjAW1NQUGAee+wxExkZaUJDQ81NN91kDhw44LOdXbt2mb59+5qQkBDTqFEj8+STT5qSkhKfmoULF5pu3boZm81mWrVq5bOP42r778h9991nmjdvbmw2m2ncuLHp3bu3NwQZo2NdFX4ZhHTMK86gQYNMkyZNjM1mM02bNjWDBg0y27Zt8y6vicfaYowx5T+PJCIiIlLz6RohERERqbMUhERERKTOUhASERGROktBSEREROosBSERERGpsxSEREREpM5SEBIREZE6S0FIRERE6iwFIREREamzFIRERESkzlIQEhERkTpLQUhERETqrP8Hls78zE0ybtYAAAAASUVORK5CYII="
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.plot(list(h2), list(h1))\n",
|
||
"plt.plot(np.linspace(1000, 50000), m(np.linspace(1000, 50000), *p))"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"outputs": [],
|
||
"source": [],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 2
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython2",
|
||
"version": "2.7.6"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0
|
||
}
|