compb-dla-data-analysis/notebooks/rust-3d.py
2023-03-14 15:05:22 +00:00

57 lines
1.6 KiB
Python

from pathlib import Path
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy
from glob import glob
def read_3d(path: str):
df = pd.read_csv(path, skipinitialspace=True)
df['N'] = df.index + 1
df['r'] = (df.x ** 2 + df.y ** 2 + df.z ** 2) ** 0.5
df['cr'] = df.r.cummax()
df['fd'] = np.log(df.N) / np.log(df.cr)
return df
def read_load_dir(load_dir: str):
paths = glob(f'{load_dir}/*.csv')
return [read_3d(path) for path in paths]
def convergent_tail_index(series, tol):
diffs = np.abs(np.ediff1d(series))
for i in range(0, len(diffs)):
if np.max(diffs[i:]) <= tol:
return i
# No convergence found
return None
def mean_of_tail(series, tol=0.05):
tail_index = convergent_tail_index(series, tol)
if tail_index is None:
raise Exception("No convergence found.")
return np.mean(series[tail_index:])
def fd_stats(dfs):
fds = [mean_of_tail(df.fd, 0.01) for df in dfs]
fds_clean = [f for f in fds if f < np.inf]
return np.mean(fds_clean), np.std(fds_clean)
df = read_3d("/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/c-codebase/out-2.csv")
print(mean_of_tail(df.fd, 0.01))
df = read_3d("/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/c-codebase/out-26n.csv")
print(mean_of_tail(df.fd, 0.01))
df = read_3d("/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/c-codebase/out-26nn.csv")
print(mean_of_tail(df.fd, 0.01))
# dfs = read_load_dir("/Users/joshuacoles/Developer/checkouts/jc3091/CompB DLA/data-analysis/data/rust-3d-1/1")
# print(fd_stats(dfs))