This commit is contained in:
Joshua Coles 2023-03-16 13:24:39 +00:00
parent 32fe7580f3
commit a695f52ca1
11 changed files with 243 additions and 394 deletions

7
Cargo.lock generated
View File

@ -2950,6 +2950,7 @@ dependencies = [
"rand",
"serde",
"serde_json",
"svg",
]
[[package]]
@ -3145,6 +3146,12 @@ version = "0.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73473c0e59e6d5812c5dfe2a064a6444949f089e20eec9a2e5506596494e4623"
[[package]]
name = "svg"
version = "0.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e715e0c3fc987f4c435dc7189641fd9caa6919a74675ace605c38e201d278001"
[[package]]
name = "svg_fmt"
version = "0.4.1"

View File

@ -19,8 +19,8 @@ name = "ui"
path = "src/ui.rs"
[[bin]]
name = "fd-calc"
path = "src/fd.rs"
name = "tools"
path = "src/tools_cli.rs"
# Set the default for crate.
[profile.dev]
@ -48,6 +48,7 @@ nalgebra = "0.32.2"
kiddo = "0.2.5"
anyhow = "1.0.69"
itertools = "0.10.5"
svg = "0.13.0"
[build-dependencies]
cbindgen = "0.24.3"

View File

@ -100,15 +100,20 @@ impl<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Stick
let distance = next_position.abs();
if distance > self.kill_circle {
println!("HE");
self.active_particle = None;
} else if !self.space.is_occupied(&next_position) {
if self.sticker.should_stick(&mut self.rng, &self.space, &next_position) {
println!("STY");
self.deposit(&next_position);
self.active_particle = None;
return;
} else {
println!("MV");
self.active_particle.replace(next_position);
}
} else {
println!("Err");
}
}

View File

@ -23,7 +23,7 @@ impl P2 {
let (x, y) = (
radius * theta.sin(),
radius * theta.sin(),
radius * theta.cos(),
);
P2 { x, y }

View File

@ -28,7 +28,7 @@ impl GriddedPosition for HexPosition {
(-1, 0), (-1, 1), (0, 1),
];
self.clone() + HexPosition { q: OFFSETS[neighbour_index].0, r: OFFSETS[neighbour_index].0 }
self.clone() + HexPosition { q: OFFSETS[neighbour_index].0, r: OFFSETS[neighbour_index].1 }
}
fn linear_index(&self, grid_size: u32) -> usize {

View File

@ -14,7 +14,9 @@ impl VectorStorage {
impl<P: GriddedPosition> Storage<P> for VectorStorage {
fn is_occupied(&self, position: &P) -> bool {
return self.backing[position.linear_index(self.grid_size)];
let i = position.linear_index(self.grid_size);
println!("{i}");
return self.backing[i];
}
fn deposit(&mut self, position: &P) {

View File

@ -1,55 +1,44 @@
#![feature(generic_const_exprs)]
#![feature(let_chains)]
mod system;
mod cli;
use std::fs::File;
use std::os::unix::fs::symlink;
use bevy::tasks::ParallelSlice;
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
use itertools::{Itertools, MinMaxResult};
use clap::Parser;
use crate::BoxCountCli;
use crate::cli::cli::OutputFormat;
use crate::system::{GriddedPosition, Position};
use crate::system::model::HistoryLine;
use crate::tools::read;
fn box_count_2d(data: &Vec<Grid2D>, size: u32) -> usize {
fn bb(data: &Vec<Grid2D>) -> ((i32, i32), (i32, i32)) {
let x = data
.iter().minmax_by(|a, b| a.x.cmp(&b.x));
let y = data
.iter().minmax_by(|a, b| a.x.cmp(&b.x));
match (x, y) {
(MinMaxResult::MinMax(min_x, max_x), MinMaxResult::MinMax(min_y, max_y)) => {
((min_x.x, min_y.y), (max_x.x, max_y.y))
},
_ => panic!("Cannot determine bounding box")
}
}
fn box_count_2d(data: &Vec<Grid2D>, box_number: u32) -> usize {
let n = data.len();
let x_min = data
.iter()
.min_by(|Grid2D { x: x1, y: y1 }, Grid2D { x: x2, y: y2 }| x1.cmp(x2))
.unwrap().x;
let x_max = data
.iter()
.max_by(|Grid2D { x: x1, y: y1 }, Grid2D { x: x2, y: y2 }| x1.cmp(x2))
.unwrap().x;
let y_min = data
.iter()
.min_by(|Grid2D { x: x1, y: y1 }, Grid2D { x: x2, y: y2 }| y1.cmp(y2))
.unwrap().y;
let y_max = data
.iter()
.max_by(|Grid2D { x: x1, y: y1 }, Grid2D { x: x2, y: y2 }| y1.cmp(y2))
.unwrap().y;
let ((x_min, x_max), (y_min, y_max)) = bb(data);
let x_range = (x_max - x_min) as f64;
let y_range = (y_max - y_min) as f64;
let w: f64 = x_range / (size as f64);
// let n_x = size;
// let n_y = (y_range / w).ceil() as u32;
let w: f64 = x_range / (box_number as f64);
let grid_points = data.iter()
data.iter()
.map(|Grid2D { x, y }| [((x - x_min) as f64 / w) as u32, ((y - y_min) as f64 / w) as u32])
.collect::<Vec<_>>();
return grid_points.iter()
.unique()
.count();
.count()
}
fn box_count_3d(data: &Vec<Grid3D>, size: u32) -> usize {
@ -121,33 +110,6 @@ fn box_count_nd<const N: usize>(data: &Vec<[f32; N]>, size: u32) -> usize {
.count();
}
#[derive(Parser)]
struct FDArgs {
format: OutputFormat,
path: std::path::PathBuf,
}
fn main() {
let args = FDArgs::parse();
let qa = match args.format {
OutputFormat::FullDataJson => {
serde_json::from_reader::<_, Vec<HistoryLine<Grid3D>>>(File::open(args.path).unwrap())
.expect("Failed to read json")
.iter()
.map(|l| l.position.clone())
.collect::<Vec<_>>()
}
OutputFormat::Positions => {
csv::Reader::from_path(args.path).unwrap().deserialize::<Grid3D>()
.collect::<Result<Vec<Grid3D>, _>>()
.unwrap()
}
};
assert_eq!(qa.iter().unique().collect::<Vec<_>>().len(), qa.len());
for size in 1..250 {
println!("[{}, {:?}],", size, box_count_3d(&qa, size));
}
pub fn main(cli: &BoxCountCli) {
let particles = read(&cli.path, cli.format);
}

29
src/tools/mod.rs Normal file
View File

@ -0,0 +1,29 @@
use std::path::Path;
use serde::de::DeserializeOwned;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::Position;
pub mod boxcount;
pub mod render;
pub fn read<T: Position>(path: &Path, format: OutputFormat) -> Vec<T> where T: DeserializeOwned {
match format {
OutputFormat::FullDataJson => read_json(path),
OutputFormat::Positions => read_csv(path)
}
}
pub fn read_json<T: Position>(path: &Path) -> Vec<T> where T: DeserializeOwned {
serde_json::from_reader::<_, Vec<HistoryLine<T>>>(File::open(path).expect("Failed to open file"))
.expect("Failed to read json")
.iter()
.map(|l| (l.position.clone()))
.collect::<Vec<_>>()
}
pub fn read_csv<T: Position>(path: &Path) -> Vec<T> where T: DeserializeOwned {
csv::Reader::from_path(path).expect("Failed to read positions csv").deserialize::<T>()
.collect::<Result<Vec<T>, _>>()
.unwrap()
}

109
src/tools/render.rs Normal file
View File

@ -0,0 +1,109 @@
#![feature(generic_const_exprs)]
#![feature(let_chains)]
use std::fs::File;
use std::path::PathBuf;
use anyhow::Context;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::spaces::square_grid::Grid2D;
use clap::Parser;
use serde::de::DeserializeOwned;
use serde::Deserialize;
use svg::Node;
use svg::node::element::Rectangle;
use crate::system::Position;
use crate::system::spaces::hexagonal::HexPosition;
#[derive(Debug, Parser)]
struct Args {
format: OutputFormat,
path: PathBuf,
output: PathBuf,
}
trait ToSvg {
fn to_svg(&self, size: i32) -> Box<dyn Node>;
}
impl ToSvg for Grid2D {
fn to_svg(&self, size: i32) -> Box<dyn Node> {
Box::new(Rectangle::new()
.set("fill", "rgb(0, 0, 0)")
.set("width", size)
.set("height", size)
.set("x", self.x * size)
.set("y", self.y * size))
}
}
impl ToSvg for HexPosition {
fn to_svg(&self, size: i32) -> Box<dyn Node> {
let points = [
[25.045, 128.0], [256.0, 0.0], [486.955, 128.0], [486.955, 384.0], [256.0, 512.0], [25.045, 384.0]
];
let size = size as f32;
let b = points.map(|x| [
(x[0] / 512.0) * (size),
(x[1] / 512.0) * (size)]
);
let c = b.map(|p| format!("{},{}", p[0], p[1])).join(" ");
let [x, y] = self.to_cartesian();
Box::new(Rectangle::new()
.set("fill", "rgb(0, 0, 0)")
.set("x", x * size)
.set("y", y * size))
}
}
fn read_json<T: Position>(args: &Args) -> Vec<T> where T: DeserializeOwned {
serde_json::from_reader::<_, Vec<HistoryLine<T>>>(File::open(&args.path).expect("Failed to open file"))
.expect("Failed to read json")
.iter()
.map(|l| (l.position.clone()))
.collect::<Vec<_>>()
}
fn read_csv<T: Position>(args: &Args) -> Vec<T> where T: DeserializeOwned {
csv::Reader::from_path(&args.path).expect("Failed to read positions csv").deserialize::<T>()
.collect::<Result<Vec<T>, _>>()
.unwrap()
}
fn main() {
let args = Args::parse();
dbg!(&args);
let positions: Vec<Grid2D> = match args.format {
OutputFormat::FullDataJson => read_json::<Grid2D>(&args),
OutputFormat::Positions => read_csv::<Grid2D>(&args),
};
let size: i32 = 800;
let max_x = positions.iter().max_by(|a, b| a.x.abs().cmp(&b.x.abs())).unwrap().x.abs();
let max_y = positions.iter().max_by(|a, b| a.y.abs().cmp(&b.y.abs())).unwrap().y.abs();
let max_size = max_x.max(max_y) * size;
let mut svg = svg::Document::new()
.set("width", max_size * size)
.set("height", max_size * size)
.set("viewBox", format!("{} {} {} {}", -max_size, -max_size, max_size * 2, max_size * 2));
svg.append(Rectangle::new()
.set("fill", "white")
.set("width", max_size * 2)
.set("height", max_size * 2)
.set("x", -max_size)
.set("y", -max_size)
);
for position in positions {
svg.append(position.to_svg(size));
}
svg::write(File::create(args.output).unwrap(), &svg).unwrap();
}

48
src/tools_cli.rs Normal file
View File

@ -0,0 +1,48 @@
#![feature(generic_const_exprs)]
#![feature(let_chains)]
use std::fs::File;
use std::path::{Path, PathBuf};
use anyhow::Context;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::spaces::square_grid::Grid2D;
use clap::{Parser, Command, Args, Subcommand};
use serde::de::DeserializeOwned;
use serde::Deserialize;
use svg::Node;
use svg::node::element::Rectangle;
use crate::system::Position;
use crate::system::spaces::hexagonal::HexPosition;
mod system;
mod cli;
mod tools;
#[derive(Debug, Parser)]
enum ToolsCli {
Render(RenderCli),
BoxCount(BoxCountCli)
}
#[derive(Debug, Args)]
struct RenderCli {
}
#[derive(Debug, Args)]
struct BoxCountCli {
#[arg(value_enum, short, long, default_value_t = OutputFormat::Positions)]
format: OutputFormat,
path: PathBuf,
}
fn main() {
let args = ToolsCli::parse();
dbg!(&args);
match args {
ToolsCli::Render(_) => {}
ToolsCli::BoxCount(cli) => tools::boxcount::main(&cli),
}
}

338
src/ui.rs
View File

@ -2,36 +2,20 @@
use bevy::{
prelude::*,
sprite::collide_aabb::{collide, Collision},
sprite::MaterialMesh2dBundle,
};
// Defines the amount of time that should elapse between each physics step.
const TIME_STEP: f32 = 1.0 / 60.0;
// These constants are defined in `Transform` units.
// Using the default 2D camera they correspond 1:1 with screen pixels.
const PADDLE_SIZE: Vec3 = Vec3::new(120.0, 20.0, 0.0);
const GAP_BETWEEN_PADDLE_AND_FLOOR: f32 = 60.0;
const PADDLE_SPEED: f32 = 500.0;
// How close can the paddle get to the wall
const PADDLE_PADDING: f32 = 10.0;
// We set the z-value of the ball to 1 so it renders on top in the case of overlapping sprites.
const BALL_STARTING_POSITION: Vec3 = Vec3::new(0.0, -50.0, 1.0);
const BALL_SIZE: Vec3 = Vec3::new(30.0, 30.0, 0.0);
const BALL_SPEED: f32 = 400.0;
const INITIAL_BALL_DIRECTION: Vec2 = Vec2::new(0.5, -0.5);
const WALL_THICKNESS: f32 = 10.0;
// x coordinates
const LEFT_WALL: f32 = -450.;
const RIGHT_WALL: f32 = 450.;
// y coordinates
const BOTTOM_WALL: f32 = -300.;
const TOP_WALL: f32 = 300.;
const BRICK_SIZE: Vec2 = Vec2::new(100., 30.);
const PARTICLE_SIZE: Vec2 = Vec2::new(10., 10.);
// These values are exact
const GAP_BETWEEN_PADDLE_AND_BRICKS: f32 = 270.0;
const GAP_BETWEEN_BRICKS: f32 = 5.0;
@ -39,227 +23,36 @@ const GAP_BETWEEN_BRICKS: f32 = 5.0;
const GAP_BETWEEN_BRICKS_AND_CEILING: f32 = 20.0;
const GAP_BETWEEN_BRICKS_AND_SIDES: f32 = 20.0;
const SCOREBOARD_FONT_SIZE: f32 = 40.0;
const SCOREBOARD_TEXT_PADDING: Val = Val::Px(5.0);
const BACKGROUND_COLOR: Color = Color::rgb(0.9, 0.9, 0.9);
const PADDLE_COLOR: Color = Color::rgb(0.3, 0.3, 0.7);
const BALL_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
const BRICK_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const WALL_COLOR: Color = Color::rgb(0.8, 0.8, 0.8);
const TEXT_COLOR: Color = Color::rgb(0.5, 0.5, 1.0);
const SCORE_COLOR: Color = Color::rgb(1.0, 0.5, 0.5);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Scoreboard { score: 0 })
.insert_resource(ClearColor(BACKGROUND_COLOR))
.add_startup_system(setup)
.add_event::<CollisionEvent>()
// Add our gameplay simulation systems to the fixed timestep schedule
.add_systems(
(
check_for_collisions,
apply_velocity.before(check_for_collisions),
move_paddle
.before(check_for_collisions)
.after(apply_velocity),
play_collision_sound.after(check_for_collisions),
)
.in_schedule(CoreSchedule::FixedUpdate),
)
// Configure how frequently our gameplay systems are run
.insert_resource(FixedTime::new_from_secs(TIME_STEP))
.add_system(update_scoreboard)
.add_system(bevy::window::close_on_esc)
.run();
}
#[derive(Component)]
struct Paddle;
#[derive(Component)]
struct Ball;
#[derive(Component, Deref, DerefMut)]
struct Velocity(Vec2);
#[derive(Component)]
struct Collider;
#[derive(Default)]
struct CollisionEvent;
#[derive(Component)]
struct Brick;
#[derive(Resource)]
struct CollisionSound(Handle<AudioSource>);
// This bundle is a collection of the components that define a "wall" in our game
#[derive(Bundle)]
struct WallBundle {
// You can nest bundles inside of other bundles like this
// Allowing you to compose their functionality
sprite_bundle: SpriteBundle,
collider: Collider,
}
/// Which side of the arena is this wall located on?
enum WallLocation {
Left,
Right,
Bottom,
Top,
}
impl WallLocation {
fn position(&self) -> Vec2 {
match self {
WallLocation::Left => Vec2::new(LEFT_WALL, 0.),
WallLocation::Right => Vec2::new(RIGHT_WALL, 0.),
WallLocation::Bottom => Vec2::new(0., BOTTOM_WALL),
WallLocation::Top => Vec2::new(0., TOP_WALL),
}
}
fn size(&self) -> Vec2 {
let arena_height = TOP_WALL - BOTTOM_WALL;
let arena_width = RIGHT_WALL - LEFT_WALL;
// Make sure we haven't messed up our constants
assert!(arena_height > 0.0);
assert!(arena_width > 0.0);
match self {
WallLocation::Left | WallLocation::Right => {
Vec2::new(WALL_THICKNESS, arena_height + WALL_THICKNESS)
}
WallLocation::Bottom | WallLocation::Top => {
Vec2::new(arena_width + WALL_THICKNESS, WALL_THICKNESS)
}
}
}
}
impl WallBundle {
// This "builder method" allows us to reuse logic across our wall entities,
// making our code easier to read and less prone to bugs when we change the logic
fn new(location: WallLocation) -> WallBundle {
WallBundle {
sprite_bundle: SpriteBundle {
transform: Transform {
// We need to convert our Vec2 into a Vec3, by giving it a z-coordinate
// This is used to determine the order of our sprites
translation: location.position().extend(0.0),
// The z-scale of 2D objects must always be 1.0,
// or their ordering will be affected in surprising ways.
// See https://github.com/bevyengine/bevy/issues/4149
scale: location.size().extend(1.0),
..default()
},
sprite: Sprite {
color: WALL_COLOR,
..default()
},
..default()
},
collider: Collider,
}
}
}
// This resource tracks the game's score
#[derive(Resource)]
struct Scoreboard {
score: usize,
}
// Add the game's entities to our world
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
// Camera
commands.spawn(Camera2dBundle::default());
// Sound
let ball_collision_sound = asset_server.load("sounds/breakout_collision.ogg");
commands.insert_resource(CollisionSound(ball_collision_sound));
// Paddle
let paddle_y = BOTTOM_WALL + GAP_BETWEEN_PADDLE_AND_FLOOR;
commands.spawn((
SpriteBundle {
transform: Transform {
translation: Vec3::new(0.0, paddle_y, 0.0),
scale: PADDLE_SIZE,
..default()
},
sprite: Sprite {
color: PADDLE_COLOR,
..default()
},
..default()
},
Paddle,
Collider,
));
// Ball
commands.spawn((
MaterialMesh2dBundle {
mesh: meshes.add(shape::Circle::default().into()).into(),
material: materials.add(ColorMaterial::from(BALL_COLOR)),
transform: Transform::from_translation(BALL_STARTING_POSITION).with_scale(BALL_SIZE),
..default()
},
Ball,
Velocity(INITIAL_BALL_DIRECTION.normalize() * BALL_SPEED),
));
// Scoreboard
commands.spawn(
TextBundle::from_sections([
TextSection::new(
"Score: ",
TextStyle {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: SCOREBOARD_FONT_SIZE,
color: TEXT_COLOR,
},
),
TextSection::from_style(TextStyle {
font: asset_server.load("fonts/FiraMono-Medium.ttf"),
font_size: SCOREBOARD_FONT_SIZE,
color: SCORE_COLOR,
}),
])
.with_style(Style {
position_type: PositionType::Absolute,
position: UiRect {
top: SCOREBOARD_TEXT_PADDING,
left: SCOREBOARD_TEXT_PADDING,
..default()
},
..default()
}),
);
// Walls
commands.spawn(WallBundle::new(WallLocation::Left));
commands.spawn(WallBundle::new(WallLocation::Right));
commands.spawn(WallBundle::new(WallLocation::Bottom));
commands.spawn(WallBundle::new(WallLocation::Top));
// Bricks
// Negative scales result in flipped sprites / meshes,
// which is definitely not what we want here
assert!(BRICK_SIZE.x > 0.0);
assert!(BRICK_SIZE.y > 0.0);
assert!(PARTICLE_SIZE.x > 0.0);
assert!(PARTICLE_SIZE.y > 0.0);
let total_width_of_bricks = (RIGHT_WALL - LEFT_WALL) - 2. * GAP_BETWEEN_BRICKS_AND_SIDES;
let bottom_edge_of_bricks = paddle_y + GAP_BETWEEN_PADDLE_AND_BRICKS;
@ -269,8 +62,8 @@ fn setup(
assert!(total_height_of_bricks > 0.0);
// Given the space available, compute how many rows and columns of bricks we can fit
let n_columns = (total_width_of_bricks / (BRICK_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_rows = (total_height_of_bricks / (BRICK_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_columns = (total_width_of_bricks / (PARTICLE_SIZE.x + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_rows = (total_height_of_bricks / (PARTICLE_SIZE.y + GAP_BETWEEN_BRICKS)).floor() as usize;
let n_vertical_gaps = n_columns - 1;
// Because we need to round the number of columns,
@ -278,20 +71,20 @@ fn setup(
let center_of_bricks = (LEFT_WALL + RIGHT_WALL) / 2.0;
let left_edge_of_bricks = center_of_bricks
// Space taken up by the bricks
- (n_columns as f32 / 2.0 * BRICK_SIZE.x)
- (n_columns as f32 / 2.0 * PARTICLE_SIZE.x)
// Space taken up by the gaps
- n_vertical_gaps as f32 / 2.0 * GAP_BETWEEN_BRICKS;
// In Bevy, the `translation` of an entity describes the center point,
// not its bottom-left corner
let offset_x = left_edge_of_bricks + BRICK_SIZE.x / 2.;
let offset_y = bottom_edge_of_bricks + BRICK_SIZE.y / 2.;
let offset_x = left_edge_of_bricks + PARTICLE_SIZE.x / 2.;
let offset_y = bottom_edge_of_bricks + PARTICLE_SIZE.y / 2.;
for row in 0..n_rows {
for column in 0..n_columns {
let brick_position = Vec2::new(
offset_x + column as f32 * (BRICK_SIZE.x + GAP_BETWEEN_BRICKS),
offset_y + row as f32 * (BRICK_SIZE.y + GAP_BETWEEN_BRICKS),
offset_x + column as f32 * (PARTICLE_SIZE.x + GAP_BETWEEN_BRICKS),
offset_y + row as f32 * (PARTICLE_SIZE.y + GAP_BETWEEN_BRICKS),
);
// brick
@ -303,120 +96,13 @@ fn setup(
},
transform: Transform {
translation: brick_position.extend(0.0),
scale: Vec3::new(BRICK_SIZE.x, BRICK_SIZE.y, 1.0),
scale: Vec3::new(PARTICLE_SIZE.x, PARTICLE_SIZE.y, 1.0),
..default()
},
..default()
},
Brick,
Collider,
));
}
}
}
fn move_paddle(
keyboard_input: Res<Input<KeyCode>>,
mut query: Query<&mut Transform, With<Paddle>>,
) {
let mut paddle_transform = query.single_mut();
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::Left) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::Right) {
direction += 1.0;
}
// Calculate the new horizontal paddle position based on player input
let new_paddle_position = paddle_transform.translation.x + direction * PADDLE_SPEED * TIME_STEP;
// Update the paddle position,
// making sure it doesn't cause the paddle to leave the arena
let left_bound = LEFT_WALL + WALL_THICKNESS / 2.0 + PADDLE_SIZE.x / 2.0 + PADDLE_PADDING;
let right_bound = RIGHT_WALL - WALL_THICKNESS / 2.0 - PADDLE_SIZE.x / 2.0 - PADDLE_PADDING;
paddle_transform.translation.x = new_paddle_position.clamp(left_bound, right_bound);
}
fn apply_velocity(mut query: Query<(&mut Transform, &Velocity)>) {
for (mut transform, velocity) in &mut query {
transform.translation.x += velocity.x * TIME_STEP;
transform.translation.y += velocity.y * TIME_STEP;
}
}
fn update_scoreboard(scoreboard: Res<Scoreboard>, mut query: Query<&mut Text>) {
let mut text = query.single_mut();
text.sections[1].value = scoreboard.score.to_string();
}
fn check_for_collisions(
mut commands: Commands,
mut scoreboard: ResMut<Scoreboard>,
mut ball_query: Query<(&mut Velocity, &Transform), With<Ball>>,
collider_query: Query<(Entity, &Transform, Option<&Brick>), With<Collider>>,
mut collision_events: EventWriter<CollisionEvent>,
) {
let (mut ball_velocity, ball_transform) = ball_query.single_mut();
let ball_size = ball_transform.scale.truncate();
// check collision with walls
for (collider_entity, transform, maybe_brick) in &collider_query {
let collision = collide(
ball_transform.translation,
ball_size,
transform.translation,
transform.scale.truncate(),
);
if let Some(collision) = collision {
// Sends a collision event so that other systems can react to the collision
collision_events.send_default();
// Bricks should be despawned and increment the scoreboard on collision
if maybe_brick.is_some() {
scoreboard.score += 1;
commands.entity(collider_entity).despawn();
}
// reflect the ball when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// only reflect if the ball's velocity is going in the opposite direction of the
// collision
match collision {
Collision::Left => reflect_x = ball_velocity.x > 0.0,
Collision::Right => reflect_x = ball_velocity.x < 0.0,
Collision::Top => reflect_y = ball_velocity.y < 0.0,
Collision::Bottom => reflect_y = ball_velocity.y > 0.0,
Collision::Inside => { /* do nothing */ }
}
// reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
ball_velocity.x = -ball_velocity.x;
}
// reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
ball_velocity.y = -ball_velocity.y;
}
}
}
}
fn play_collision_sound(
mut collision_events: EventReader<CollisionEvent>,
audio: Res<Audio>,
sound: Res<CollisionSound>,
) {
// Play a sound once per frame if a collision occurred.
if !collision_events.is_empty() {
// This prevents events staying active on the next frame.
collision_events.clear();
audio.play(sound.0.clone());
}
}