Compare commits

...

No commits in common. "rust-sticking-probability" and "main" have entirely different histories.

25 changed files with 531 additions and 4482 deletions

View File

@ -1,9 +0,0 @@
kind: pipeline
name: default
steps:
- name: test
image: rust:1.67
commands:
- cargo build --verbose --all
- cargo test --verbose --all

8
.gitignore vendored
View File

@ -1,3 +1,9 @@
/target
# Final executable
/run
# IDE files
.idea
# Data files
*.csv
*.o

4
AIM.md
View File

@ -1,4 +0,0 @@
Make a gridded structure which can support:
- 3D
- Hexagons

3683
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,43 +0,0 @@
[package]
name = "rust-codebase"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[lib]
name = "dla"
crate-type = ["staticlib"]
path = "src/clib.rs"
[[bin]]
name = "model"
path = "src/main.rs"
[[bin]]
name = "ui"
path = "src/ui.rs"
# Set the default for crate.
[profile.dev]
opt-level = 1
# Set the default for crate.
[profile.release]
debug = true
# Set the default for dependencies.
[profile.dev.package."*"]
opt-level = 3
[dependencies]
clap = { version = "4.1.8", features = ["derive"] }
bevy = { version = "0.9.1" }
nd_array = "0.1.0"
num-integer = "0.1.45"
rand = { version = "0.8.5", features = ["default", "small_rng"] }
csv = "1.1"
serde = { version = "1.0.152", features = ["derive"] }
[build-dependencies]
cbindgen = "0.24.3"

244
DLASystem.cpp Normal file
View File

@ -0,0 +1,244 @@
//
// DLASystem.cpp
//
#include "DLASystem.h"
// this function gets called every step,
// if there is an active particle then it gets moved,
// if not then add a particle
void DLASystem::update() {
if (lastParticleIsActive == 1) {
moveLastParticle();
} else if (numParticles < endNum) {
addParticleOnAddCircle();
setParticleActive();
} else {
this->running = false;
}
}
void DLASystem::clearParticles() {
// delete particles and the particle list
for (int i = 0; i < numParticles; i++) {
delete particleList[i];
}
particleList.clear();
numParticles = 0;
}
// remove any existing particles and setup initial condition
void DLASystem::Reset() {
// stop running
this->running = false;
clearParticles();
lastParticleIsActive = 0;
// set the grid to zero
for (int i = 0; i < gridSize; i++) {
for (int j = 0; j < gridSize; j++) {
grid[i][j] = 0;
}
}
// setup initial condition and parameters
addCircle = 10;
killCircle = 2.0 * addCircle;
clusterRadius = 0.0;
// add a single particle at the origin
double pos[] = {0.0, 0.0};
addParticle(pos);
}
// set the value of a grid cell for a particular position
// note the position has the initial particle at (0,0)
// but this corresponds to the middle of the grid array ie grid[ halfGrid ][ halfGrid ]
void DLASystem::setGrid(double pos[], int val) {
int halfGrid = gridSize / 2;
grid[(int) (pos[0] + halfGrid)][(int) (pos[1] + halfGrid)] = val;
}
// read the grid cell for a given position
int DLASystem::readGrid(double pos[]) {
int halfGrid = gridSize / 2;
return grid[(int) (pos[0] + halfGrid)][(int) (pos[1] + halfGrid)];
}
// check if the cluster is big enough and we should stop:
// to be safe, we need the killCircle to be at least 2 less than the edge of the grid
int DLASystem::checkStop() {
if (killCircle + 2 >= gridSize / 2) {
this->running = false;
cerr << "STOP" << endl;
return 1;
} else return 0;
}
// add a particle to the system at a specific position
void DLASystem::addParticle(double pos[]) {
// create a new particle
Particle *p = new Particle(pos);
// push_back means "add this to the end of the list"
particleList.push_back(p);
numParticles++;
// pos coordinates should be -gridSize/2 < x < gridSize/2
setGrid(pos, 1);
}
// add a particle to the system at a random position on the addCircle
// if we hit an occupied site then we do nothing except print a message
// (this should never happen)
void DLASystem::addParticleOnAddCircle() {
double pos[2];
double theta = rgen.random01() * 2 * M_PI;
pos[0] = ceil(addCircle * cos(theta));
pos[1] = ceil(addCircle * sin(theta));
if (readGrid(pos) == 0)
addParticle(pos);
else
cerr << "FAIL " << pos[0] << " " << pos[1] << endl;
}
// send back the position of a neighbour of a given grid cell
// NOTE: there is no check that the neighbour is inside the grid,
// this has to be done separately...
void DLASystem::setPosNeighbour(double setpos[], double pos[], int val) {
switch (val) {
case 0:
setpos[0] = pos[0] + 1.0;
setpos[1] = pos[1];
break;
case 1:
setpos[0] = pos[0] - 1.0;
setpos[1] = pos[1];
break;
case 2:
setpos[0] = pos[0];
setpos[1] = pos[1] + 1.0;
break;
case 3:
setpos[0] = pos[0];
setpos[1] = pos[1] - 1.0;
break;
}
}
// when we add a particle to the cluster, we should update the cluster radius
// and the sizes of the addCircle and the killCircle
void DLASystem::updateClusterRadius(double pos[]) {
double rr = distanceFromOrigin(pos);
if (rr > clusterRadius) {
clusterRadius = rr;
// this is how big addCircle is supposed to be:
// either 20% more than cluster radius, or at least 5 bigger.
double check = clusterRadius * addRatio;
if (check < clusterRadius + 5)
check = clusterRadius + 5;
// if it is smaller then update everything...
if (addCircle < check) {
addCircle = check;
killCircle = killRatio * addCircle;
}
checkStop();
}
}
// make a random move of the last particle in the particleList
void DLASystem::moveLastParticle() {
int rr = rgen.randomInt(4); // pick a random number in the range 0-3, which direction do we hop?
double newpos[2];
Particle *lastP = particleList[numParticles - 1];
setPosNeighbour(newpos, lastP->pos, rr);
if (distanceFromOrigin(newpos) > killCircle) {
//cerr << "#deleting particle" << endl;
setGrid(lastP->pos, 0);
particleList.pop_back(); // remove particle from particleList
numParticles--;
setParticleInactive();
} else if (readGrid(newpos) == 0) {
setGrid(lastP->pos, 0); // set the old grid site to empty
// update the position
particleList[numParticles - 1]->pos[0] = newpos[0];
particleList[numParticles - 1]->pos[1] = newpos[1];
setGrid(lastP->pos, 1); // set the new grid site to be occupied
// check if we stick
if (checkStick()) {
//cerr << "stick" << endl;
setParticleInactive(); // make the particle inactive (stuck)
updateClusterRadius(lastP->pos); // update the cluster radius, addCircle, etc.
}
}
}
// check if the last particle should stick (to a neighbour)
int DLASystem::checkStick() {
Particle *lastP = particleList[numParticles - 1];
// loop over neighbours
for (int i = 0; i < 4; i++) {
double checkpos[2];
setPosNeighbour(checkpos, lastP->pos, i);
// if the neighbour is occupied and the particle will stick probabilistically.
if (readGrid(checkpos) == 1 && rgen.random01() < stickProbability) {
return 1;
}
}
return 0;
}
// constructor
DLASystem::DLASystem(const int maxParticles, const string &csvPath, const double stickProbability) {
cerr << "creating system, gridSize " << gridSize << endl;
numParticles = 0;
endNum = maxParticles;
this->stickProbability = stickProbability;
// allocate memory for the grid, remember to free the memory in destructor
grid = new int *[gridSize];
for (int i = 0; i < gridSize; i++) {
grid[i] = new int[gridSize];
}
// reset initial parameters
Reset();
addRatio = 1.2; // how much bigger the addCircle should be, compared to cluster radius
killRatio = 1.7; // how much bigger is the killCircle, compared to the addCircle
csv.open(csvPath);
}
// destructor
DLASystem::~DLASystem() {
// strictly we should not print inside the destructor but never mind...
cerr << "deleting system" << endl;
// delete the particles
clearParticles();
// delete the grid
for (int i = 0; i < gridSize; i++)
delete[] grid[i];
delete[] grid;
if (csv.is_open()) {
csv.flush();
csv.close();
}
}
void DLASystem::exportData() {
csv << "x,y" << endl;
for (auto particle: particleList) {
csv << particle->pos[0] << "," << particle->pos[1] << endl;
}
}

122
DLASystem.h Normal file
View File

@ -0,0 +1,122 @@
#pragma once
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <vector>
#define _USE_MATH_DEFINES
#include <math.h>
#include <random>
#include <string>
#include <sstream>
#include "Particle.h"
#include "rnd.h"
using namespace std;
class DLASystem {
private:
// these are private variables and functions that the user will not see
// list of particles
vector<Particle*> particleList;
int numParticles;
/*
* The probability that a particle will stick at a given site when adjacent.
* */
double stickProbability;
// delete particles and clear the particle list
void clearParticles();
// size of cluster
double clusterRadius;
// these are related to the DLA algorithm
double addCircle;
double killCircle;
// size of grid
static const int gridSize = 1600;
int **grid; // this will be a 2d array that stores whether each site is occupied
// random number generator, class name is rnd, instance is rgen
rnd rgen;
// CSV ouput
ofstream csv;
// number of particles at which the simulation will stop
// (the value is set in constructor)
int endNum;
// the values of these variables are set in the constructor
double addRatio; // how much bigger the addCircle should be, compared to cluster radius
double killRatio; // how much bigger is the killCircle, compared to the addCircle
public:
// these are public variables and functions
// update the system: if there is an active particle then move it,
// else create a new particle (on the adding circle)
void update();
// is the simulation running
bool running;
// lastParticleIsActive is +1 if there is an active particle in the system, otherwise 0
int lastParticleIsActive;
// constructor
explicit DLASystem(int maxParticles, const string &csvPath, double stickProbability);
// destructor
~DLASystem();
// delete all particles and reset
void Reset();
// this sets the seed for the random numbers
void setSeed(int s) { rgen.setSeed(s); }
// check whether we should stop (eg the cluster has reached the edge of the grid)
int checkStop();
// if pos is outside the cluster radius then set clusterRadius to be the distance to pos.
void updateClusterRadius( double pos[] );
// set and read grid entries associated with a given position
void setGrid(double pos[], int val);
int readGrid(double pos[]);
// return the distance of a given point from the origin
double distanceFromOrigin(double pos[]) {
return sqrt( pos[0]*pos[0] + pos[1]*pos[1] );
}
// set whether there is an active particle in the system or not
void setParticleActive() { lastParticleIsActive = 1; }
void setParticleInactive() { lastParticleIsActive = 0; }
// add a particle at pos
void addParticle(double pos[]);
// add a particle at a random point on the addCircle
void addParticleOnAddCircle();
// assign setpos to the position of a neighbour of pos
// which neighbour we look at is determined by val (=0,1,2,3)
void setPosNeighbour(double setpos[], double pos[], int val);
// this attempts to move the last particle in the List to a random neighbour
// if the neighbour is occupied then nothing happens
// the function also checks if the moving particle should stick.
void moveLastParticle();
// check whether the last particle should stick
// currently it sticks whenever it touches another particle
int checkStick();
void exportData();
};

72
Makefile Normal file
View File

@ -0,0 +1,72 @@
# ====================================================================================== #
# From the Author #
# ====================================================================================== #
# ! The purpose of this Makefile is to build the DLASystem project
# ! This makefile was adapted to work with any cpp project on OSX
# ====================================================================================== #
# Variables of the Makefile #
# ====================================================================================== #
CXX = clang++
CXXFLAGS = -Wall -Wextra -g -O0 --std=c++20
IFLAGS = -I/usr/local/include -I/usr/include
LFLAGS = -L/usr/local/lib -lm
# ------------------------------------------
# FOR GENERIC MAKEFILE:
# 1 - Binary directory
# 2 - Source directory
# 3 - Executable name
# 4 - Sources names
# 5 - Dependencies names
# ------------------------------------------
BIN = .
SOURCE = .
EXEC = ./run
SOURCES = $(wildcard $(SOURCE)/*.cpp)
OBJECTS = $(SOURCES:.cpp=.o)
# ====================================================================================== #
# Targets of the Makefile #
# target_name : dependency #
# <tabulation> command #
# ====================================================================================== #
# ------------------------------------------
# ! - all : Compiles everything
# ! - help : Shows this help
# ! - clean : erases all object files *.o
# ! and all binary executables
# ------------------------------------------
all : $(BIN)/run
test: $(BIN)/hllc_test
help :
@grep -E "^# !" Makefile | sed -e 's/# !/ /g'
clean:
rm -f $(EXEC) $(OBJECTS)
# ------------------------------------------
# Executable
# ------------------------------------------
$(EXEC): $(OBJECTS)
$(CXX) $(OBJECTS) -o $(EXEC) $(IFLAGS) $(LFLAGS)
# ------------------------------------------
# Temorary files (*.o) (IFLAGS should be added here)
# ------------------------------------------
$(SOURCE)/%.o: $(SOURCE)/%.cpp
$(CXX) $(CXXFLAGS) -c $< -o $@ $(IFLAGS) $(LFLAGS)

20
Particle.h Normal file
View File

@ -0,0 +1,20 @@
#pragma once
class Particle {
public:
static const int dim = 2; // we are in two dimensions
double *pos; // pointer to an array of size dim, to store the position
// default constructor
Particle() {
pos = new double[dim];
}
// constructor, with a specified initial position
Particle(double set_pos[]) {
pos = new double[dim];
for (int d=0;d<dim;d++)
pos[d]=set_pos[d];
}
// destructor
~Particle() { delete[] pos; }
};

4
README.md Normal file
View File

@ -0,0 +1,4 @@
# DLA Model
This currently contains The Initially Provided Code for the DLA model which will be used as the source of truth for
further alterations once verified.

View File

@ -1,16 +0,0 @@
extern crate cbindgen;
use std::env;
use std::path::Path;
use cbindgen::{Config, Builder};
fn main() {
let crate_env = env::var("CARGO_MANIFEST_DIR").unwrap();
let crate_path = Path::new(&crate_env);
let config = Config::from_root_or_default(crate_path);
Builder::new().with_crate(crate_path.to_str().unwrap())
.with_config(config)
.generate()
.expect("Cannot generate header file!")
.write_to_file("libdla.h");
}

View File

@ -1,24 +0,0 @@
#include <cstdarg>
#include <cstdint>
#include <cstdlib>
#include <ostream>
#include <new>
struct CStorage;
struct CPosition {
int32_t _0;
int32_t _1;
};
extern "C" {
CStorage *storage_new(uint32_t grid_size);
bool storage_at(const CStorage *storage, int32_t i, int32_t j);
void storage_deposit(CStorage *storage, int32_t i, int32_t j, uint8_t val);
CPosition walk(uint32_t d, int32_t i, int32_t j);
} // extern "C"

29
mainDLA.cpp Normal file
View File

@ -0,0 +1,29 @@
#include <iostream>
#include "DLASystem.h"
int main(int argc, char **argv) {
if (argc != 5) {
cerr << "Usage " << argv[0] << " <seed> <maxParticles> <stickProbability> <csvPath>" << endl;
return 1;
}
int seed = std::stoi(argv[1]);
int maxParticles = std::stoi(argv[2]);
double stickProbability = std::stod(argv[3]);
string csvPath = argv[4];
std::cerr << "Setting seed " << seed << endl;
// create the system
auto *sys = new DLASystem(maxParticles, csvPath, stickProbability);
sys->setSeed(seed);
sys->running = true;
while (sys->running) {
sys->update();
}
sys->exportData();
return 0;
}

33
rnd.h Normal file
View File

@ -0,0 +1,33 @@
#pragma once
#include <random>
// ... don't worry how this all works
// ... member functions that you may want to use:
// random01() returns a random double between 0 and 1
// randomInt(max) returns a random int between 0 and max-1 (inclusive)
class rnd {
private:
// nuts and bolts.. should not need to touch this.
std::default_random_engine generator;
int genMax;
std::uniform_int_distribution<int> *intmax;
std::uniform_real_distribution<double> *real01;
public:
// constructor
rnd() {
genMax = 0x7fffffff;
//cout << "genMax is " << generator.max() << endl;
intmax = new std::uniform_int_distribution<int>(0, genMax);
real01 = new std::uniform_real_distribution<double>(0.0, 1.0);
}
// destructor
~rnd() { delete intmax; delete real01; }
// set the random seed
void setSeed(int seed) { generator.seed(seed); }
// member functions for generating random double in [0,1] and random integer in [0,max-1]
double random01() { return (*real01)(generator); }
int randomInt(int max) { return (*intmax)(generator) % max; }
};

View File

@ -1,2 +0,0 @@
[toolchain]
channel = "nightly"

View File

@ -1,75 +0,0 @@
#![feature(array_zip)]
use system::Storage;
use crate::system::grid::{Position, VectorStorage};
mod system;
#[derive(Eq, PartialEq, Debug)]
#[repr(C)]
pub struct CPosition(i32, i32);
pub struct CStorage(VectorStorage);
#[no_mangle]
pub extern "C" fn storage_new(grid_size: u32) -> &'static mut CStorage {
let mut pntr = Box::new(CStorage(VectorStorage::new(grid_size)));
Box::leak(pntr)
}
#[no_mangle]
pub extern "C" fn storage_at(storage: &CStorage, i: i32, j: i32) -> bool {
storage.0.at(&Position { x: i, y: j })
}
#[no_mangle]
pub extern "C" fn storage_deposit(storage: &mut CStorage, i: i32, j: i32, val: u8) {
storage.0.write(&Position { x: i, y: j }, val == 1);
}
#[no_mangle]
pub extern "C" fn walk(d: u32, i: i32, j: i32) -> CPosition {
return test::b(d, i, j);
}
mod test {
use num_integer::Integer;
use crate::CPosition;
use crate::system::grid::Position;
pub(crate) fn a(d: u32, i: i32, j: i32) -> CPosition {
match d {
0 => CPosition(i + 1, j),
1 => CPosition(i - 1, j),
2 => CPosition(i, j + 1),
3 => CPosition(i, j - 1),
_ => panic!("Ahh"),
}
}
pub(crate) fn b(d: u32, i: i32, j: i32) -> CPosition {
let (dim, sign) = d.div_rem(&2);
let sign = if sign == 0 { 1 } else { -1 };
// HACK: Our conventin and the MVA are different, since we are trying to strangle fig this, quick hack.
let offset = Position::in_direction(dim, sign);
let next = Position { x: i, y: j } + offset;
CPosition(next.x, next.y)
}
#[test]
fn test() {
let d = [0, 1, 2, 3];
d.iter()
.map(|d| d.div_rem(&2))
.for_each(|p| println!("{p:?}"));
}
#[test]
fn alignment() {
let d = [0, 1, 2, 3];
d.iter()
.map(|d| (a(*d, 0, 0), b(*d, 0, 0)))
.for_each(|p| assert_eq!(p.0, p.1));
}
}

View File

@ -1,36 +0,0 @@
use rand::rngs::SmallRng;
use rand::SeedableRng;
use crate::system::grid::{Position, VectorStorage};
use crate::system::model::DLASystem;
use crate::system::nd::{NDPosition, NDVectorStorage};
use crate::system::walker::LocalRandomWalker;
pub fn initial_config(seed: u64, max_particles: usize) -> DLASystem<SmallRng, Position, VectorStorage, LocalRandomWalker> {
DLASystem::new_g(
SmallRng::seed_from_u64(seed),
VectorStorage::new(1600),
LocalRandomWalker,
1.0,
max_particles,
)
}
pub fn stick_probability(seed: u64, max_particles: usize, stick_probability: f32) -> DLASystem<SmallRng, Position, VectorStorage, LocalRandomWalker> {
DLASystem::new_g(
SmallRng::seed_from_u64(seed),
VectorStorage::new(1600),
LocalRandomWalker,
stick_probability,
max_particles,
)
}
pub fn three_dimensional(seed: u64, max_particles: usize, stick_probability: f32) -> DLASystem<SmallRng, NDPosition<3>, NDVectorStorage<3>, LocalRandomWalker> {
DLASystem::new_g(
SmallRng::seed_from_u64(seed),
NDVectorStorage::new(1600),
LocalRandomWalker,
stick_probability,
max_particles,
)
}

View File

@ -1,36 +0,0 @@
#![feature(array_zip)]
use std::path::PathBuf;
mod system;
mod example_systems;
use clap::Parser;
use crate::example_systems::stick_probability;
#[derive(Parser, Debug)]
struct Cli {
seed: u64,
max_particles: usize,
stick_probability: f32,
csv_path: PathBuf,
}
fn main() {
let cli = Cli::parse();
println!("Running: {:?}", cli);
let mut sys = stick_probability(
cli.seed,
cli.max_particles,
cli.stick_probability
);
while sys.running {
sys.update();
}
sys.export_data(&cli.csv_path)
.expect("Failed to write");
}

View File

@ -1,92 +0,0 @@
use std::f32::consts::PI;
use std::ops::Add;
use num_integer::Integer;
use rand::Rng;
use crate::system::{GriddedPosition, Storage};
use serde::{Serialize, Deserialize};
pub struct VectorStorage {
backing: Vec<bool>,
grid_size: u32,
}
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct Position {
pub x: i32,
pub y: i32,
}
impl Position {
pub fn in_direction(direction: u32, value: i32) -> Self {
if direction == 0 { Position { x: value, y: 0 } } else { Position { x: 0, y: value } }
}
}
impl Add for Position {
type Output = Position;
fn add(self, rhs: Self) -> Self::Output {
Position { x: self.x + rhs.x, y: self.y + rhs.y }
}
}
impl GriddedPosition for Position {
const NEIGHBOURS: u32 = 4;
fn zero() -> Position {
Position { x: 0, y: 0 }
}
fn spawn<R: Rng>(rng: &mut R, radius: f32) -> Self {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y) = (radius * theta.cos(), radius * theta.sin());
Position { x: x as i32, y: y as i32 }
}
fn abs(&self) -> f32 {
((self.x.pow(2) + self.y.pow(2)) as f32).powf(0.5)
}
fn neighbour(&self, neighbour_index: u32) -> Self {
let (dim, sign) = neighbour_index.div_rem(&2);
let sign = if sign == 0 { 1 } else { -1 };
let offset = Position::in_direction(dim, sign);
self.clone() + offset
}
fn linear_index(&self, grid_size: u32) -> usize {
let grid_size = grid_size as i32;
assert!(self.x <= grid_size && -(grid_size) <= self.x);
assert!(self.y <= grid_size && -(grid_size) <= self.y);
let x = (self.x + (grid_size) / 2) as usize;
let y = (self.y + (grid_size) / 2) as usize;
return grid_size as usize * y + x;
}
}
impl VectorStorage {
pub fn new(grid_size: u32) -> VectorStorage {
VectorStorage { grid_size, backing: vec![false; grid_size.pow(2) as usize] }
}
/*
* Convenience function for c-binding
* */
pub fn write(&mut self, position: &Position, val: bool) {
self.backing[position.linear_index(self.grid_size)] = val;
}
}
impl Storage<Position> for VectorStorage {
fn at(&self, position: &Position) -> bool {
return self.backing[position.linear_index(self.grid_size)]
}
fn deposit(&mut self, position: &Position) {
self.backing[position.linear_index(self.grid_size)] = true;
}
}

View File

@ -1,51 +0,0 @@
use std::ops::Add;
use bevy::render::color::HexColorError::Hex;
use rand::Rng;
use crate::system::GriddedPosition;
use serde::{Serialize, Deserialize};
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct HexPosition {
pub q: i32,
pub r: i32,
}
impl Add for HexPosition {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
HexPosition { q: self.q + rhs.q, r: self.r + rhs.r }
}
}
impl GriddedPosition for HexPosition {
const NEIGHBOURS: u32 = 6;
fn zero() -> Self {
HexPosition { q: 0, r: 0 }
}
fn spawn<R: Rng>(rng: &mut R, radius: f32) -> Self {
todo!()
}
fn abs(&self) -> f32 {
((self.q.pow(2) + self.r.pow(2) + self.q * self.r) as f32).sqrt()
}
fn neighbour(&self, neighbour_index: u32) -> Self {
let neighbour_index = neighbour_index as usize;
const OFFSETS: [(i32, i32); 6] = [
(1, 0), (1, -1), (0, -1),
(-1, 0), (-1, 1), (0, 1),
];
self.clone() + HexPosition { q: OFFSETS[neighbour_index].0, r: OFFSETS[neighbour_index].0 }
}
fn linear_index(&self, grid_size: u32) -> usize {
todo!()
// ((self.q + grid_size / 2) + grid_size * self.r) as usize
}
}

View File

@ -1,24 +0,0 @@
use std::ops::Add;
use rand::Rng;
use serde::Serialize;
pub mod walker;
pub mod grid;
pub mod model;
pub mod nd;
mod hexagonal;
pub trait GriddedPosition: Add<Output=Self> + Serialize + Clone {
const NEIGHBOURS: u32;
fn zero() -> Self;
fn spawn<R: Rng>(rng: &mut R, radius: f32) -> Self;
fn abs(&self) -> f32;
fn neighbour(&self, neighbour_index: u32) -> Self;
fn linear_index(&self, grid_size: u32) -> usize;
}
pub trait Storage<P: GriddedPosition> {
fn at(&self, position: &P) -> bool;
fn deposit(&mut self, position: &P);
}

View File

@ -1,128 +0,0 @@
use std::io;
use std::path::Path;
use rand::prelude::*;
use crate::system::{GriddedPosition, Storage};
use crate::system::walker::Walker;
pub struct DLASystem<R: Rng, P: GriddedPosition, S: Storage<P>, W: Walker<P>> {
rng: R,
space: S,
walker: W,
stick_probability: f32,
max_particles: usize,
pub running: bool,
particles: Vec<P>,
active_particle: Option<P>,
add_ratio: f32,
add_circle: f32,
kill_ratio: f32,
kill_circle: f32,
cluster_radius: f32,
}
impl<R: Rng, P: GriddedPosition, S: Storage<P>, W: Walker<P>> DLASystem<R, P, S, W> {
pub fn new_g(rng: R, space: S, walker: W, stick_probability: f32, max_particles: usize) -> Self {
let mut sys = DLASystem {
rng,
stick_probability,
max_particles,
running: true,
space,
walker,
particles: vec![],
active_particle: None,
add_ratio: 1.2,
kill_ratio: 1.7,
add_circle: 10.0,
kill_circle: 20.0,
cluster_radius: 0.0,
};
sys.deposit(&P::zero());
sys
}
pub fn update(&mut self) {
if self.active_particle.is_some() {
self.move_particle();
} else if self.particles.len() < self.max_particles {
self.spawn_particle();
} else {
self.running = false;
}
}
fn move_particle(&mut self) {
let current_position = &self
.active_particle
.clone()
.expect("No active particle");
let next_position = self.walker.walk(&mut self.rng, current_position);
let distance = next_position.abs();
if distance > self.kill_circle {
self.active_particle = None;
} else if !self.space.at(&next_position) {
if self.check_stick(&next_position) {
self.deposit(&next_position);
self.active_particle = None;
return;
} else {
self.active_particle.replace(next_position);
}
}
}
fn check_stick(&mut self, position: &P) -> bool {
(0..P::NEIGHBOURS)
.map(|n| position.neighbour(n))
.any(|neighbour|
self.space.at(&neighbour)
&& self.rng.gen_range(0.0f32..=1.0) < self.stick_probability
)
}
fn spawn_particle(&mut self) {
let position = P::spawn(&mut self.rng, self.add_circle);
if !self.space.at(&position) {
self.active_particle = Some(position);
}
}
fn deposit(&mut self, p0: &P) {
self.particles.push(p0.clone());
self.space.deposit(p0);
let distance = p0.abs();
if distance > self.cluster_radius {
self.cluster_radius = distance;
let new_add_circle = (self.cluster_radius * self.add_ratio).max(self.cluster_radius + 5.0);
if self.add_circle < new_add_circle {
self.add_circle = new_add_circle;
self.kill_circle = self.kill_ratio * self.add_circle;
}
}
}
pub fn export_data(&self, path: &Path) -> io::Result<()> {
let mut wtr = csv::Writer::from_path(path)?;
for particle in &self.particles {
wtr.serialize(particle)?;
}
wtr.flush()?;
Ok(())
}
}

View File

@ -1,107 +0,0 @@
use std::ops::Add;
use num_integer::Integer;
use rand::Rng;
use serde::{Serialize, Serializer};
use serde::ser::SerializeMap;
use crate::system::GriddedPosition;
use crate::system::Storage;
pub struct NDVectorStorage<const DIM: usize> {
backing: Vec<bool>,
grid_size: u32,
}
impl<const DIM: usize> NDVectorStorage<DIM> {
pub fn new(grid_size: u32) -> Self {
Self { grid_size, backing: vec![false; grid_size.pow(DIM as u32) as usize] }
}
}
impl<const DIM: usize> Storage<NDPosition<DIM>> for NDVectorStorage<DIM> {
fn at(&self, position: &NDPosition<DIM>) -> bool {
return self.backing[position.linear_index(self.grid_size)];
}
fn deposit(&mut self, position: &NDPosition<DIM>) {
self.backing[position.linear_index(self.grid_size)] = true;
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct NDPosition<const DIM: usize>([i32; DIM]);
impl<const DIM: usize> NDPosition<DIM> {
pub fn in_direction(direction: usize, value: i32) -> Self {
let mut arr = [0; DIM];
arr[direction] = value;
NDPosition(arr)
}
}
impl<const DIM: usize> Add for NDPosition<DIM> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self(self.0.zip(rhs.0).map(|(a, b)| a + b))
}
}
impl<const DIM: usize> Serialize for NDPosition<DIM> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
let mut map = serializer.serialize_map(Some(DIM))?;
for (i, v) in self.0.iter().enumerate() {
map.serialize_entry(&format!("r{}", i), v)?;
}
map.end()
}
}
impl<const DIM: usize> GriddedPosition for NDPosition<DIM> {
const NEIGHBOURS: u32 = { 2u32.pow(DIM as u32) } as u32;
fn zero() -> Self {
NDPosition([0; DIM])
}
fn spawn<R: Rng>(rng: &mut R, radius: f32) -> Self {
let mut a: [f32; DIM] = [0f32; DIM];
let mut b: [i32; DIM] = [0i32; DIM];
for i in 0..DIM {
a[i] = rng.gen_range(0f32..1f32);
}
let norm = a.iter().sum::<f32>()
.sqrt();
for i in 0..DIM {
a[i] = a[i] * radius / norm;
b[i] = a[i] as i32;
}
return Self(b);
}
fn abs(&self) -> f32 {
let a: i32 = self.0.iter()
.map(|r| r.pow(2))
.sum();
(a as f32).powf(0.5)
}
fn neighbour(&self, neighbour_index: u32) -> Self {
let (dim, sign) = neighbour_index.div_rem(&(DIM as u32));
let sign = if sign == 0 { 1 } else { -1 };
let offset = Self::in_direction(dim as usize, sign);
self.clone() + offset
}
fn linear_index(&self, grid_size: u32) -> usize {
self.0.iter()
.enumerate()
.map(|(i, v)| (grid_size.pow(i as u32) as usize) * (v + ((grid_size / 2) as i32)) as usize)
.sum()
}
}

View File

@ -1,57 +0,0 @@
use rand::prelude::Rng;
use crate::system::GriddedPosition;
pub trait Walker<P: GriddedPosition> {
fn walk<R: Rng>(&self, rng: &mut R, position: &P) -> P;
}
pub struct LocalRandomWalker;
impl<Position: GriddedPosition> Walker<Position> for LocalRandomWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &Position) -> Position {
position.neighbour(rng.gen_range(0u32..Position::NEIGHBOURS))
}
}
mod test {
use rand::rngs::SmallRng;
use rand::{SeedableRng, thread_rng};
use crate::system::{GriddedPosition, grid::Position};
use crate::system::walker::{LocalRandomWalker, Walker};
#[test]
fn uniformity() {
let walker = LocalRandomWalker;
let mut rng = SmallRng::from_rng(thread_rng()).unwrap();
let mut results: Vec<Position> = vec![];
let origin = &Position::zero();
let x: u32 = (1_000_000);
for i in 0..x {
results.push(walker.walk(&mut rng, origin));
}
let a = results
.iter()
.filter(|a| **a == Position { x: 0, y: 1 })
.count();
let b = results
.iter()
.filter(|a| **a == Position { x: 0, y: -1 })
.count();
let c = results
.iter()
.filter(|a| **a == Position { x: 1, y: 0 })
.count();
let d = results
.iter()
.filter(|a| **a == Position { x: -1, y: 0 })
.count();
println!("{} {} {} {}", a as f32 / x as f32, b as f32 / x as f32, c as f32 / x as f32, d as f32 / x as f32);
}
}

View File

@ -1,94 +0,0 @@
#![feature(array_zip)]
use std::default::Default;
use std::error::Error;
use bevy::{prelude::*, sprite::MaterialMesh2dBundle};
use csv::{Position, Reader, ReaderBuilder};
use clap::Parser;
#[derive(Parser, Resource)] // requires `derive` feature
enum UICli {
CSV(CSVArgs)
}
#[derive(clap::Args)]
struct CSVArgs {
path: std::path::PathBuf,
}
struct Position2D(i32, i32);
fn main() -> Result<(), Box<dyn Error>> {
let cli = UICli::parse();
App::new()
.insert_resource(cli)
.add_plugins(DefaultPlugins.set(WindowPlugin {
window: WindowDescriptor {
title: "DLA Static 2D Render".to_string(),
width: 800.,
height: 800.,
..default()
},
..default()
}))
.add_startup_system(setup_ui)
.add_startup_system(read_csv)
.run();
Ok(())
}
fn read_csv(
cli: Res<UICli>,
mut commands: Commands
) {
let csv_path = match &cli.into_inner() {
UICli::CSV(CSVArgs { path }) => path,
_ => panic!("Ahh"),
};
let mut reader = ReaderBuilder::new()
.has_headers(true)
.from_path(csv_path)
.expect("Failed to read csv");
let headers = reader.headers()
.expect("Failed to read headers");
let x_column = headers.iter().position(|name| name.trim() == "x")
.expect("Failed to find x column");
let y_column = headers.iter().position(|name| name.trim() == "y")
.expect("Failed to find x column");
let positions = reader
.records()
.map(|record| {
let record = record.expect("Failed to read position");
let x: i32 = record[x_column].trim().parse::<i32>().expect("Failed to read x");
let y: i32 = record[y_column].trim().parse::<i32>().expect("Failed to read y");
Position2D(x, y)
});
for Position2D(x, y) in positions {
let rect_size = 5.0;
commands.spawn(SpriteBundle {
sprite: Sprite {
color: Color::rgb(0.25, 0.25, 0.75),
custom_size: Some(Vec2::new(rect_size, rect_size)),
..default()
},
transform: Transform::from_translation(Vec3::new((x as f32) * rect_size, (y as f32) * rect_size, 0.)),
..default()
});
}
}
fn setup_ui(
mut commands: Commands,
) {
commands.spawn(Camera2dBundle::default());
}