Compare commits

...

No commits in common. "main" and "rust" have entirely different histories.
main ... rust

36 changed files with 4671 additions and 530 deletions

9
.drone.yml Normal file
View File

@ -0,0 +1,9 @@
kind: pipeline
name: default
steps:
- name: test
image: rust:1.67
commands:
- cargo build --verbose --all
- cargo test --verbose --all

11
.gitignore vendored
View File

@ -1,9 +1,6 @@
# Final executable
/run
# IDE files
/target
.idea
# Data files
*.csv
*.o
/*.json
*.svg
/data

4
AIM.md Normal file
View File

@ -0,0 +1,4 @@
Make a gridded structure which can support:
- 3D
- Hexagons

2589
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

61
Cargo.toml Normal file
View File

@ -0,0 +1,61 @@
[package]
name = "rust-codebase"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[[bin]]
name = "model"
path = "src/main.rs"
[[bin]]
name = "tools"
path = "src/tools_cli.rs"
# Set the default for crate.
[profile.dev]
opt-level = 1
# Set the default for crate.
[profile.release]
debug = true
# Set the default for dependencies.
[profile.dev.package."*"]
opt-level = 3
[dependencies]
clap = { version = "4.1.8", features = ["derive"] }
nd_array = "0.1.0"
num-integer = "0.1.45"
rand = { version = "0.8.5", features = ["default", "small_rng"] }
csv = "1.1"
serde = { version = "1.0.152", features = ["derive"] }
serde_json = "1.0.93"
kd-tree = { version = "0.5.1", features = ["nalgebra"] }
nalgebra = { version = "0.32.2", features = ["serde-serialize"] }
kiddo = "0.2.5"
anyhow = "1.0.69"
itertools = "0.10.5"
svg = "0.13.0"
polars = { version = "0.27.2", features = [
"docs",
"zip_with",
"csv-file",
"temporal",
"fmt",
"dtype-slim",
"csv-file",
"lazy",
"nightly",
"performant"
] }
rayon = "1.7.0"
walkdir = "2.3.3"
parquet = { version = "35.0.0", features = ["serde"] }
colorous = "1.0.10"
num-traits = "0.2.15"
[build-dependencies]
cbindgen = "0.24.3"

View File

@ -1,244 +0,0 @@
//
// DLASystem.cpp
//
#include "DLASystem.h"
// this function gets called every step,
// if there is an active particle then it gets moved,
// if not then add a particle
void DLASystem::update() {
if (lastParticleIsActive == 1) {
moveLastParticle();
} else if (numParticles < endNum) {
addParticleOnAddCircle();
setParticleActive();
} else {
this->running = false;
}
}
void DLASystem::clearParticles() {
// delete particles and the particle list
for (int i = 0; i < numParticles; i++) {
delete particleList[i];
}
particleList.clear();
numParticles = 0;
}
// remove any existing particles and setup initial condition
void DLASystem::Reset() {
// stop running
this->running = false;
clearParticles();
lastParticleIsActive = 0;
// set the grid to zero
for (int i = 0; i < gridSize; i++) {
for (int j = 0; j < gridSize; j++) {
grid[i][j] = 0;
}
}
// setup initial condition and parameters
addCircle = 10;
killCircle = 2.0 * addCircle;
clusterRadius = 0.0;
// add a single particle at the origin
double pos[] = {0.0, 0.0};
addParticle(pos);
}
// set the value of a grid cell for a particular position
// note the position has the initial particle at (0,0)
// but this corresponds to the middle of the grid array ie grid[ halfGrid ][ halfGrid ]
void DLASystem::setGrid(double pos[], int val) {
int halfGrid = gridSize / 2;
grid[(int) (pos[0] + halfGrid)][(int) (pos[1] + halfGrid)] = val;
}
// read the grid cell for a given position
int DLASystem::readGrid(double pos[]) {
int halfGrid = gridSize / 2;
return grid[(int) (pos[0] + halfGrid)][(int) (pos[1] + halfGrid)];
}
// check if the cluster is big enough and we should stop:
// to be safe, we need the killCircle to be at least 2 less than the edge of the grid
int DLASystem::checkStop() {
if (killCircle + 2 >= gridSize / 2) {
this->running = false;
cerr << "STOP" << endl;
return 1;
} else return 0;
}
// add a particle to the system at a specific position
void DLASystem::addParticle(double pos[]) {
// create a new particle
Particle *p = new Particle(pos);
// push_back means "add this to the end of the list"
particleList.push_back(p);
numParticles++;
// pos coordinates should be -gridSize/2 < x < gridSize/2
setGrid(pos, 1);
}
// add a particle to the system at a random position on the addCircle
// if we hit an occupied site then we do nothing except print a message
// (this should never happen)
void DLASystem::addParticleOnAddCircle() {
double pos[2];
double theta = rgen.random01() * 2 * M_PI;
pos[0] = ceil(addCircle * cos(theta));
pos[1] = ceil(addCircle * sin(theta));
if (readGrid(pos) == 0)
addParticle(pos);
else
cerr << "FAIL " << pos[0] << " " << pos[1] << endl;
}
// send back the position of a neighbour of a given grid cell
// NOTE: there is no check that the neighbour is inside the grid,
// this has to be done separately...
void DLASystem::setPosNeighbour(double setpos[], double pos[], int val) {
switch (val) {
case 0:
setpos[0] = pos[0] + 1.0;
setpos[1] = pos[1];
break;
case 1:
setpos[0] = pos[0] - 1.0;
setpos[1] = pos[1];
break;
case 2:
setpos[0] = pos[0];
setpos[1] = pos[1] + 1.0;
break;
case 3:
setpos[0] = pos[0];
setpos[1] = pos[1] - 1.0;
break;
}
}
// when we add a particle to the cluster, we should update the cluster radius
// and the sizes of the addCircle and the killCircle
void DLASystem::updateClusterRadius(double pos[]) {
double rr = distanceFromOrigin(pos);
if (rr > clusterRadius) {
clusterRadius = rr;
// this is how big addCircle is supposed to be:
// either 20% more than cluster radius, or at least 5 bigger.
double check = clusterRadius * addRatio;
if (check < clusterRadius + 5)
check = clusterRadius + 5;
// if it is smaller then update everything...
if (addCircle < check) {
addCircle = check;
killCircle = killRatio * addCircle;
}
checkStop();
}
}
// make a random move of the last particle in the particleList
void DLASystem::moveLastParticle() {
int rr = rgen.randomInt(4); // pick a random number in the range 0-3, which direction do we hop?
double newpos[2];
Particle *lastP = particleList[numParticles - 1];
setPosNeighbour(newpos, lastP->pos, rr);
if (distanceFromOrigin(newpos) > killCircle) {
//cerr << "#deleting particle" << endl;
setGrid(lastP->pos, 0);
particleList.pop_back(); // remove particle from particleList
numParticles--;
setParticleInactive();
} else if (readGrid(newpos) == 0) {
setGrid(lastP->pos, 0); // set the old grid site to empty
// update the position
particleList[numParticles - 1]->pos[0] = newpos[0];
particleList[numParticles - 1]->pos[1] = newpos[1];
setGrid(lastP->pos, 1); // set the new grid site to be occupied
// check if we stick
if (checkStick()) {
//cerr << "stick" << endl;
setParticleInactive(); // make the particle inactive (stuck)
updateClusterRadius(lastP->pos); // update the cluster radius, addCircle, etc.
}
}
}
// check if the last particle should stick (to a neighbour)
int DLASystem::checkStick() {
Particle *lastP = particleList[numParticles - 1];
// loop over neighbours
for (int i = 0; i < 4; i++) {
double checkpos[2];
setPosNeighbour(checkpos, lastP->pos, i);
// if the neighbour is occupied and the particle will stick probabilistically.
if (readGrid(checkpos) == 1 && rgen.random01() < stickProbability) {
return 1;
}
}
return 0;
}
// constructor
DLASystem::DLASystem(const int maxParticles, const string &csvPath, const double stickProbability) {
cerr << "creating system, gridSize " << gridSize << endl;
numParticles = 0;
endNum = maxParticles;
this->stickProbability = stickProbability;
// allocate memory for the grid, remember to free the memory in destructor
grid = new int *[gridSize];
for (int i = 0; i < gridSize; i++) {
grid[i] = new int[gridSize];
}
// reset initial parameters
Reset();
addRatio = 1.2; // how much bigger the addCircle should be, compared to cluster radius
killRatio = 1.7; // how much bigger is the killCircle, compared to the addCircle
csv.open(csvPath);
}
// destructor
DLASystem::~DLASystem() {
// strictly we should not print inside the destructor but never mind...
cerr << "deleting system" << endl;
// delete the particles
clearParticles();
// delete the grid
for (int i = 0; i < gridSize; i++)
delete[] grid[i];
delete[] grid;
if (csv.is_open()) {
csv.flush();
csv.close();
}
}
void DLASystem::exportData() {
csv << "x,y" << endl;
for (auto particle: particleList) {
csv << particle->pos[0] << "," << particle->pos[1] << endl;
}
}

View File

@ -1,122 +0,0 @@
#pragma once
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <vector>
#define _USE_MATH_DEFINES
#include <math.h>
#include <random>
#include <string>
#include <sstream>
#include "Particle.h"
#include "rnd.h"
using namespace std;
class DLASystem {
private:
// these are private variables and functions that the user will not see
// list of particles
vector<Particle*> particleList;
int numParticles;
/*
* The probability that a particle will stick at a given site when adjacent.
* */
double stickProbability;
// delete particles and clear the particle list
void clearParticles();
// size of cluster
double clusterRadius;
// these are related to the DLA algorithm
double addCircle;
double killCircle;
// size of grid
static const int gridSize = 1600;
int **grid; // this will be a 2d array that stores whether each site is occupied
// random number generator, class name is rnd, instance is rgen
rnd rgen;
// CSV ouput
ofstream csv;
// number of particles at which the simulation will stop
// (the value is set in constructor)
int endNum;
// the values of these variables are set in the constructor
double addRatio; // how much bigger the addCircle should be, compared to cluster radius
double killRatio; // how much bigger is the killCircle, compared to the addCircle
public:
// these are public variables and functions
// update the system: if there is an active particle then move it,
// else create a new particle (on the adding circle)
void update();
// is the simulation running
bool running;
// lastParticleIsActive is +1 if there is an active particle in the system, otherwise 0
int lastParticleIsActive;
// constructor
explicit DLASystem(int maxParticles, const string &csvPath, double stickProbability);
// destructor
~DLASystem();
// delete all particles and reset
void Reset();
// this sets the seed for the random numbers
void setSeed(int s) { rgen.setSeed(s); }
// check whether we should stop (eg the cluster has reached the edge of the grid)
int checkStop();
// if pos is outside the cluster radius then set clusterRadius to be the distance to pos.
void updateClusterRadius( double pos[] );
// set and read grid entries associated with a given position
void setGrid(double pos[], int val);
int readGrid(double pos[]);
// return the distance of a given point from the origin
double distanceFromOrigin(double pos[]) {
return sqrt( pos[0]*pos[0] + pos[1]*pos[1] );
}
// set whether there is an active particle in the system or not
void setParticleActive() { lastParticleIsActive = 1; }
void setParticleInactive() { lastParticleIsActive = 0; }
// add a particle at pos
void addParticle(double pos[]);
// add a particle at a random point on the addCircle
void addParticleOnAddCircle();
// assign setpos to the position of a neighbour of pos
// which neighbour we look at is determined by val (=0,1,2,3)
void setPosNeighbour(double setpos[], double pos[], int val);
// this attempts to move the last particle in the List to a random neighbour
// if the neighbour is occupied then nothing happens
// the function also checks if the moving particle should stick.
void moveLastParticle();
// check whether the last particle should stick
// currently it sticks whenever it touches another particle
int checkStick();
void exportData();
};

View File

@ -1,72 +0,0 @@
# ====================================================================================== #
# From the Author #
# ====================================================================================== #
# ! The purpose of this Makefile is to build the DLASystem project
# ! This makefile was adapted to work with any cpp project on OSX
# ====================================================================================== #
# Variables of the Makefile #
# ====================================================================================== #
CXX = clang++
CXXFLAGS = -Wall -Wextra -g -O0 --std=c++20
IFLAGS = -I/usr/local/include -I/usr/include
LFLAGS = -L/usr/local/lib -lm
# ------------------------------------------
# FOR GENERIC MAKEFILE:
# 1 - Binary directory
# 2 - Source directory
# 3 - Executable name
# 4 - Sources names
# 5 - Dependencies names
# ------------------------------------------
BIN = .
SOURCE = .
EXEC = ./run
SOURCES = $(wildcard $(SOURCE)/*.cpp)
OBJECTS = $(SOURCES:.cpp=.o)
# ====================================================================================== #
# Targets of the Makefile #
# target_name : dependency #
# <tabulation> command #
# ====================================================================================== #
# ------------------------------------------
# ! - all : Compiles everything
# ! - help : Shows this help
# ! - clean : erases all object files *.o
# ! and all binary executables
# ------------------------------------------
all : $(BIN)/run
test: $(BIN)/hllc_test
help :
@grep -E "^# !" Makefile | sed -e 's/# !/ /g'
clean:
rm -f $(EXEC) $(OBJECTS)
# ------------------------------------------
# Executable
# ------------------------------------------
$(EXEC): $(OBJECTS)
$(CXX) $(OBJECTS) -o $(EXEC) $(IFLAGS) $(LFLAGS)
# ------------------------------------------
# Temorary files (*.o) (IFLAGS should be added here)
# ------------------------------------------
$(SOURCE)/%.o: $(SOURCE)/%.cpp
$(CXX) $(CXXFLAGS) -c $< -o $@ $(IFLAGS) $(LFLAGS)

View File

@ -1,20 +0,0 @@
#pragma once
class Particle {
public:
static const int dim = 2; // we are in two dimensions
double *pos; // pointer to an array of size dim, to store the position
// default constructor
Particle() {
pos = new double[dim];
}
// constructor, with a specified initial position
Particle(double set_pos[]) {
pos = new double[dim];
for (int d=0;d<dim;d++)
pos[d]=set_pos[d];
}
// destructor
~Particle() { delete[] pos; }
};

View File

@ -1,4 +1,8 @@
# DLA Model
# DLA Generic Model
This currently contains The Initially Provided Code for the DLA model which will be used as the source of truth for
further alterations once verified.
A generic pluggable model for diffusion limited aggregation. Produces two executables,
- `./target/release/model`, built from `./src/main.rs`
- `./target/release/tools`, built from `./src/tools_cli.rs`
Build with `cargo build --release`. Requires a working rust installation.

View File

@ -1,29 +0,0 @@
#include <iostream>
#include "DLASystem.h"
int main(int argc, char **argv) {
if (argc != 5) {
cerr << "Usage " << argv[0] << " <seed> <maxParticles> <stickProbability> <csvPath>" << endl;
return 1;
}
int seed = std::stoi(argv[1]);
int maxParticles = std::stoi(argv[2]);
double stickProbability = std::stod(argv[3]);
string csvPath = argv[4];
std::cerr << "Setting seed " << seed << endl;
// create the system
auto *sys = new DLASystem(maxParticles, csvPath, stickProbability);
sys->setSeed(seed);
sys->running = true;
while (sys->running) {
sys->update();
}
sys->exportData();
return 0;
}

33
rnd.h
View File

@ -1,33 +0,0 @@
#pragma once
#include <random>
// ... don't worry how this all works
// ... member functions that you may want to use:
// random01() returns a random double between 0 and 1
// randomInt(max) returns a random int between 0 and max-1 (inclusive)
class rnd {
private:
// nuts and bolts.. should not need to touch this.
std::default_random_engine generator;
int genMax;
std::uniform_int_distribution<int> *intmax;
std::uniform_real_distribution<double> *real01;
public:
// constructor
rnd() {
genMax = 0x7fffffff;
//cout << "genMax is " << generator.max() << endl;
intmax = new std::uniform_int_distribution<int>(0, genMax);
real01 = new std::uniform_real_distribution<double>(0.0, 1.0);
}
// destructor
~rnd() { delete intmax; delete real01; }
// set the random seed
void setSeed(int seed) { generator.seed(seed); }
// member functions for generating random double in [0,1] and random integer in [0,max-1]
double random01() { return (*real01)(generator); }
int randomInt(int max) { return (*intmax)(generator) % max; }
};

2
rust-toolchain.toml Normal file
View File

@ -0,0 +1,2 @@
[toolchain]
channel = "nightly"

88
src/cli/cli.rs Normal file
View File

@ -0,0 +1,88 @@
use std::path::PathBuf;
use clap::{Parser, Args, Subcommand, ValueEnum};
#[derive(ValueEnum, Clone, Debug, Copy)]
pub enum OutputFormat {
FullDataJson,
Positions,
}
#[derive(Args, Debug)]
pub struct InitialCli {
pub grid_size: u32,
}
#[derive(Args, Debug)]
pub struct StickProbabilityCli {
pub grid_size: u32,
pub stick_probability: f32,
}
#[derive(Args, Debug)]
pub struct KDStickProbabilityCli {
pub stick_probability: f32,
}
#[derive(Args, Debug)]
pub struct BallsCli {
pub ball_radius: f32,
pub stick_distance: f32,
pub walk_step: f32,
}
#[derive(Args, Debug)]
pub struct SurfaceProbabilityMeasureCli {
pub grid_size: u32,
pub stick_probability: f32,
pub initial_data: PathBuf,
pub particles: u32,
}
#[derive(Subcommand, Debug)]
pub enum PCM {
/// Traditional DLA model in a fixed-size 2D grid
Initial(InitialCli),
/// Traditional DLA model in a fixed-size 2D grid with a probabilistic sticking component
StickProbability(StickProbabilityCli),
/// Traditional DLA model in unbounded 3D space with probabilistic sticking
Grid3d(KDStickProbabilityCli),
/// Traditional DLA model in unbounded 3D space with probabilistic sticking and off-axis walks
Grid3dOffAxis(KDStickProbabilityCli),
Hex(StickProbabilityCli),
Balls2d(BallsCli),
Balls(BallsCli),
SurfaceProbabilityMeasure(SurfaceProbabilityMeasureCli),
}
#[derive(Parser, Debug)]
pub struct ModelCli {
#[command(subcommand)]
pub preconfigured_model: PCM,
#[arg(long, help = "Set the maximum number of ticks the system will run before exiting, will still produce data after this has been reached.")]
pub max_frames: Option<usize>,
#[arg(short = 'N', long)]
pub max_particles: usize,
#[arg(long, short, help = "Specifying a seed allows for deterministic runs (when combined with other parameters such as -N)")]
pub seed: u64,
#[arg(value_enum, short, long, default_value_t = OutputFormat::Positions)]
pub format: OutputFormat,
#[arg(value_enum, short, long)]
pub output: PathBuf,
#[arg(long, default_value_t = false, help = "If the output file already exists, skipping running. Useful when running deterministically.")]
pub preserve_existing: bool,
#[arg(short, long)]
pub notify_every: Option<usize>,
}

45
src/cli/mod.rs Normal file
View File

@ -0,0 +1,45 @@
use rand::Rng;
use crate::system::model::DLASystem;
use crate::system::{Position, Storage};
use crate::system::spawner::Spawner;
use crate::system::sticker::Sticker;
use crate::system::walker::Walker;
use std::time::SystemTime;
pub mod cli;
pub mod output;
pub fn drive_system<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>>(
sys: &mut DLASystem<R, P, S, W, Sp, St>,
max_frames: Option<usize>,
notify_every: Option<usize>,
) {
let start = SystemTime::now();
let mut prev = start.clone();
let mut previous_n: usize = 0;
while sys.running {
sys.update();
if let Some(notify_every) = notify_every && (sys.history.len() % notify_every) == 0 && previous_n != sys.history.len() {
let now = SystemTime::now();
println!("[{}ms, d = {}ms] On frame {}, deposited {} particles",
now.duration_since(start).unwrap().as_millis(),
now.duration_since(prev).unwrap().as_millis(),
sys.frame, sys.history.len()
);
prev = now;
previous_n = sys.history.len();
}
match max_frames {
Some(max_frames) if max_frames <= sys.frame => {
sys.running = false;
eprintln!("System halted as it ran to {frame} frames (max_frames = {max_frames}) and did not complete", frame = sys.frame)
}
_ => {}
}
}
}

55
src/cli/output.rs Normal file
View File

@ -0,0 +1,55 @@
use std::fs::{create_dir_all, File};
use std::path::Path;
use rand::Rng;
use crate::cli::cli::OutputFormat;
use crate::system::model::DLASystem;
use crate::system::{Position, Storage};
use crate::system::spawner::Spawner;
use crate::system::sticker::Sticker;
use crate::system::walker::Walker;
pub fn write<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>>(
sys: &DLASystem<R, P, S, W, Sp, St>,
format: OutputFormat,
output: &Path,
) {
// If the parent does not exist (and we are not in the root or operating a relative 1-component-length path))
// create it. This greatly simplifies the harness code.
if let Some(parent) = output.parent() &&
parent.to_str().map(|x| x != "").unwrap_or(true) &&
!parent.exists() {
create_dir_all(parent).expect("Failed to create path to output");
}
match format {
OutputFormat::FullDataJson => write_json_full_data(sys, output),
OutputFormat::Positions => write_csv_positions(sys, output),
}
}
fn write_csv_positions<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>>(sys: &DLASystem<R, P, S, W, Sp, St>, csv_path: &Path) {
let mut wtr = csv::Writer::from_path(csv_path)
.expect("Failed to open file");
// CSVs can only store the raw positions
let positions: Vec<&P> = sys.history
.iter()
.map(|line| &line.position)
.collect();
positions
.iter()
.for_each(|position|
wtr.serialize(position).expect("Failed to write row")
);
wtr.flush()
.unwrap();
}
fn write_json_full_data<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>>(sys: &DLASystem<R, P, S, W, Sp, St>, output_path: &Path) {
let file = File::create(output_path).expect("Failed to open file");
serde_json::to_writer_pretty(file, &sys.history)
.expect("Failed to write json");
}

171
src/main.rs Normal file
View File

@ -0,0 +1,171 @@
#![feature(array_zip)]
#![feature(generic_const_exprs)]
#![feature(let_chains)]
use clap::Parser;
use rand::prelude::*;
use crate::cli::{drive_system};
use crate::cli::cli::{StickProbabilityCli, InitialCli, BallsCli, PCM, ModelCli, SurfaceProbabilityMeasureCli, KDStickProbabilityCli};
use crate::cli::cli::PCM::Balls2d;
use crate::cli::output::write;
use crate::surface_probability_measure::{LoggerSticker, ReadOnlyVectorStorage};
use crate::system::model::DLASystem;
use crate::system::spaces::continuous_3d::{ContinuousSticker, ContinuousStorage, ContinuousWalker};
use crate::system::spaces::hexagonal::HexPosition;
use crate::system::spaces::kd_grid::{KDSpace};
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
use crate::system::spaces::VectorStorage;
use crate::system::spawner::UniformSpawner;
use crate::system::sticker::{ProbabilisticSticking, SimpleSticking};
use crate::system::walker::{DiagonalRandomWalker, LocalRandomWalker, Walker};
mod system;
mod surface_probability_measure;
mod cli;
fn main() {
let cli = ModelCli::parse();
if cli.preserve_existing && cli.output.exists() {
println!("Skipping model execution as output file '{}' already exists", cli.output.to_str().unwrap());
return;
}
println!("Running: {:?}", cli);
match cli.preconfigured_model {
PCM::Initial(InitialCli { grid_size }) => {
let mut sys = DLASystem::<_, Grid2D, _, _, _, _>::new(
SmallRng::seed_from_u64(cli.seed),
VectorStorage::new(grid_size, 2),
LocalRandomWalker,
UniformSpawner,
SimpleSticking,
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::StickProbability(StickProbabilityCli { grid_size, stick_probability }) => {
let mut sys = DLASystem::<_, Grid2D, _, _, _, _>::new(
SmallRng::seed_from_u64(cli.seed),
VectorStorage::new(grid_size, 2),
LocalRandomWalker,
UniformSpawner,
ProbabilisticSticking::new(stick_probability).unwrap(),
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::Grid3d(KDStickProbabilityCli { stick_probability }) => {
let mut sys = DLASystem::<_, Grid3D, _, _, _, _>::new(
SmallRng::seed_from_u64(cli.seed),
KDSpace::new(),
LocalRandomWalker,
UniformSpawner,
ProbabilisticSticking::new(stick_probability).unwrap(),
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::Grid3dOffAxis(KDStickProbabilityCli { stick_probability }) => {
let mut sys = DLASystem::<_, Grid3D, _, _, _, _>::new(
SmallRng::seed_from_u64(cli.seed),
KDSpace::new(),
DiagonalRandomWalker,
UniformSpawner,
ProbabilisticSticking::new(stick_probability).unwrap(),
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::Hex(StickProbabilityCli { grid_size, stick_probability }) => {
let mut sys = DLASystem::<_, HexPosition, _, _, _, _>::new(
SmallRng::seed_from_u64(cli.seed),
VectorStorage::new(grid_size, 2),
LocalRandomWalker,
UniformSpawner,
ProbabilisticSticking::new(stick_probability).unwrap(),
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::Balls2d(BallsCli { ball_radius, stick_distance, walk_step }) => {
use system::spaces::continuous_2d;
let mut sys = DLASystem::new(
SmallRng::seed_from_u64(cli.seed),
continuous_2d::ContinuousStorage { inner: kiddo::KdTree::new(), ball_radius_sq: ball_radius * ball_radius },
continuous_2d::ContinuousWalker { walk_step },
UniformSpawner,
continuous_2d::ContinuousSticker { range_sq: stick_distance * stick_distance },
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::Balls(BallsCli { ball_radius, stick_distance, walk_step }) => {
let mut sys = DLASystem::new(
SmallRng::seed_from_u64(cli.seed),
ContinuousStorage { inner: kiddo::KdTree::new(), ball_radius_sq: ball_radius * ball_radius },
ContinuousWalker { walk_step },
UniformSpawner,
ContinuousSticker { range_sq: stick_distance * stick_distance },
cli.max_particles,
);
drive_system(&mut sys, cli.max_frames, cli.notify_every);
write(&sys, cli.format, &cli.output);
}
PCM::SurfaceProbabilityMeasure(SurfaceProbabilityMeasureCli { grid_size, stick_probability, particles, initial_data }) => {
let logger_sticker = LoggerSticker::new(stick_probability);
let mut sys = DLASystem::new(
SmallRng::seed_from_u64(cli.seed),
ReadOnlyVectorStorage::new(&initial_data, grid_size),
LocalRandomWalker,
UniformSpawner,
&logger_sticker,
cli.max_particles,
);
let particles = particles as usize;
while sys.running && logger_sticker.stick_positions.borrow().len() < particles {
sys.update();
}
let mut writer = csv::Writer::from_path(cli.output)
.expect("Failed to open output path");
let stick_positions = logger_sticker.stick_positions.borrow();
stick_positions
.iter()
.for_each(|pos|
writer.serialize(pos)
.expect("Failed to write position")
);
writer.flush()
.unwrap();
}
}
}

View File

@ -0,0 +1,70 @@
use std::cell::RefCell;
use std::path::{Path, PathBuf};
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};
use crate::system::model::DLASystem;
use crate::system::{Storage};
use crate::system::spaces::square_grid::Grid2D;
use crate::system::spaces::VectorStorage;
use crate::system::spawner::UniformSpawner;
use crate::system::sticker::{ProbabilisticSticking, SimpleSticking, Sticker};
use crate::system::walker::LocalRandomWalker;
pub struct LoggerSticker {
inner: ProbabilisticSticking,
pub stick_positions: RefCell<Vec<Grid2D>>,
}
impl LoggerSticker {
pub fn new(stick_probability: f32) -> LoggerSticker {
LoggerSticker {
inner: ProbabilisticSticking { stick_probability },
stick_positions: RefCell::new(Vec::new()),
}
}
}
impl<S: Storage<Grid2D>> Sticker<Grid2D, S> for &LoggerSticker {
fn should_stick<R: Rng>(&self, rng: &mut R, space: &S, position: &Grid2D) -> bool {
let should_stick = self.inner.should_stick(rng, space, position);
if should_stick {
self.stick_positions.borrow_mut()
.push(position.clone());
}
// Writes are ignored so we deposit to delete the particle but it is not written
should_stick
}
}
pub struct ReadOnlyVectorStorage {
inner: VectorStorage,
}
impl ReadOnlyVectorStorage {
pub fn new(path: &Path, grid_size: u32) -> ReadOnlyVectorStorage {
let mut inner = VectorStorage::new(grid_size, 2);
let positions: Vec<Grid2D> = csv::Reader::from_path(path)
.expect("Failed to read initial data")
.deserialize::<Grid2D>()
.map(|row| row.expect("Failed to read row"))
.collect();
for pos in positions {
inner.deposit(&pos);
}
ReadOnlyVectorStorage { inner }
}
}
impl Storage<Grid2D> for ReadOnlyVectorStorage {
fn is_occupied(&self, position: &Grid2D) -> bool {
self.inner.is_occupied(position)
}
fn deposit(&mut self, position: &Grid2D) {
eprintln!("Write ignored for space at {position:?}");
}
}

30
src/system/mod.rs Normal file
View File

@ -0,0 +1,30 @@
use std::ops::Add;
use serde::Serialize;
pub mod walker;
pub mod spawner;
pub mod sticker;
pub mod model;
pub mod spaces;
pub trait Position: Add<Output=Self> + Serialize + Clone {
const DIM: usize;
// type Cartesian;
fn zero() -> Self;
fn abs(&self) -> f32;
fn from_cartesian(cartesian: &[f32]) -> Self;
fn to_cartesian(&self) -> Vec<f32>;
}
pub trait GriddedPosition: Position {
const NEIGHBOURS: u32;
fn neighbour(&self, neighbour_index: u32) -> Self;
fn linear_index(&self, grid_size: u32) -> usize;
}
pub trait Storage<P: Position> {
fn is_occupied(&self, position: &P) -> bool;
fn deposit(&mut self, position: &P);
}

140
src/system/model.rs Normal file
View File

@ -0,0 +1,140 @@
use rand::prelude::*;
use serde::{Deserialize, Serialize};
use crate::system::{Position, Storage};
use crate::system::spawner::Spawner;
use crate::system::sticker::Sticker;
use crate::system::walker::Walker;
#[derive(Serialize, Deserialize)]
pub struct HistoryLine<P: Position> {
pub frame: usize,
pub cluster_radius: f32,
pub fd: f32,
pub position: P,
}
pub struct DLASystem<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>> {
rng: R,
/*
* These object encapsulate the behaviour of our particular model.
*/
/*
* The space, along with the chosen position choose the embedding space that the cluster grows
* in.
*/
space: S,
/*
* Walkers allow us to choose between different particle movement behaviours, eg random or
* biased walker
*/
walker: W,
spawner: Sp,
sticker: St,
pub frame: usize,
pub running: bool,
pub history: Vec<HistoryLine<P>>,
max_particles: usize,
particles: Vec<P>,
active_particle: Option<P>,
add_ratio: f32,
add_circle: f32,
kill_ratio: f32,
kill_circle: f32,
cluster_radius: f32,
}
impl<R: Rng, P: Position, S: Storage<P>, W: Walker<P>, Sp: Spawner<P>, St: Sticker<P, S>> DLASystem<R, P, S, W, Sp, St> {
pub fn new(rng: R, space: S, walker: W, spawner: Sp, sticker: St, max_particles: usize) -> Self {
let mut sys = DLASystem {
rng,
max_particles,
running: true,
spawner,
sticker,
space,
walker,
frame: 0,
particles: vec![],
history: vec![],
active_particle: None,
add_ratio: 1.2,
kill_ratio: 1.7,
add_circle: 10.0,
kill_circle: 20.0,
cluster_radius: 0.0,
};
sys.deposit(&P::zero());
sys
}
pub fn update(&mut self) {
self.frame += 1;
if self.active_particle.is_some() {
self.move_particle();
} else if self.particles.len() < self.max_particles {
self.spawn_particle();
} else {
self.running = false;
}
}
fn move_particle(&mut self) {
let current_position = &self
.active_particle
.clone()
.expect("No active particle");
let next_position = self.walker.walk(&mut self.rng, current_position);
let distance = next_position.abs();
if distance > self.kill_circle {
self.active_particle = None;
} else if !self.space.is_occupied(&next_position) {
if self.sticker.should_stick(&mut self.rng, &self.space, &next_position) {
self.deposit(&next_position);
self.active_particle = None;
return;
} else {
self.active_particle.replace(next_position);
}
}
}
fn spawn_particle(&mut self) {
let position = self.spawner.spawn(&mut self.rng, self.add_circle);
if !self.space.is_occupied(&position) {
self.active_particle = Some(position);
}
}
fn deposit(&mut self, p0: &P) {
self.particles.push(p0.clone());
self.space.deposit(p0);
let distance = p0.abs();
if distance > self.cluster_radius {
self.cluster_radius = distance;
let new_add_circle = (self.cluster_radius * self.add_ratio).max(self.cluster_radius + 5.0);
if self.add_circle < new_add_circle {
self.add_circle = new_add_circle;
self.kill_circle = self.kill_ratio * self.add_circle;
}
}
self.history.push(HistoryLine { frame: self.frame, position: p0.clone(), cluster_radius: self.cluster_radius, fd: (self.particles.len() as f32).ln() / self.cluster_radius.ln() });
}
}

View File

@ -0,0 +1,102 @@
use std::f32::consts::PI;
use std::ops::Add;
use kiddo::distance::squared_euclidean;
use rand::Rng;
use serde::{Serialize, Deserialize};
use crate::system::sticker::Sticker;
use crate::system::{Position, Storage};
use crate::system::walker::Walker;
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct P2 {
pub x: f32,
pub y: f32,
}
impl P2 {
fn as_arr(&self) -> [f32; 2] {
[self.x, self.y]
}
pub fn random_with_radius<R: Rng>(rng: &mut R, radius: f32) -> P2 {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y) = (
radius * theta.sin(),
radius * theta.cos(),
);
P2 { x, y }
}
}
impl Add for P2 {
type Output = P2;
fn add(self, rhs: Self) -> Self::Output {
P2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
pub struct ContinuousStorage {
pub inner: kiddo::KdTree<f32, (), 2>,
pub ball_radius_sq: f32,
}
impl Position for P2 {
const DIM: usize = 2;
fn zero() -> Self {
P2 { x: 0f32, y: 0f32 }
}
fn abs(&self) -> f32 {
(self.x.powi(2) + self.y.powi(2)).powf(0.5)
}
fn from_cartesian(cartesian: &[f32]) -> Self {
P2 { x: cartesian[0], y: cartesian[1] }
}
fn to_cartesian(&self) -> Vec<f32> {
vec![self.x, self.y]
}
}
impl Storage<P2> for ContinuousStorage {
fn is_occupied(&self, position: &P2) -> bool {
let (dist_sq, _) = self.inner.nearest_one(&position.as_arr(), &squared_euclidean).unwrap();
// Is the distance of this point to the next one less than twice the ball radius
dist_sq < 2.0 * self.ball_radius_sq
}
fn deposit(&mut self, position: &P2) {
self.inner.add(&position.as_arr(), ()).expect("Failed to write to space")
}
}
pub struct ContinuousSticker {
/// INVARIANT: THIS SHOULD BE GREATER THAN THE BALL_RADIUS_SQ value
pub range_sq: f32,
}
impl Sticker<P2, ContinuousStorage> for ContinuousSticker {
fn should_stick<R: Rng>(&self, _rng: &mut R, space: &ContinuousStorage, position: &P2) -> bool {
let (a, _) = space.inner.nearest_one(&position.as_arr(), &squared_euclidean).unwrap();
a < self.range_sq
}
}
pub struct ContinuousWalker {
pub walk_step: f32
}
impl Walker<P2> for ContinuousWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &P2) -> P2 {
position.clone() + P2::random_with_radius(rng, self.walk_step)
}
}

View File

@ -0,0 +1,106 @@
use std::f32::consts::PI;
use std::ops::Add;
use kiddo::distance::squared_euclidean;
use rand::Rng;
use serde::Serialize;
use crate::system::sticker::Sticker;
use crate::system::{Position, Storage};
use crate::system::walker::Walker;
#[derive(Serialize, Debug, Clone)]
pub struct P3 {
x: f32,
y: f32,
z: f32,
}
impl P3 {
fn as_arr(&self) -> [f32; 3] {
[self.x, self.y, self.z]
}
pub fn random_with_radius<R: Rng>(rng: &mut R, radius: f32) -> P3 {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let phi = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y, z) = (
radius * theta.sin() * phi.cos(),
radius * theta.sin() * phi.sin(),
radius * theta.cos()
);
P3 { x, y, z}
}
}
impl Add for P3 {
type Output = P3;
fn add(self, rhs: Self) -> Self::Output {
P3 {
x: self.x + rhs.x,
y: self.y + rhs.y,
z: self.z + rhs.z,
}
}
}
pub struct ContinuousStorage {
pub inner: kiddo::KdTree<f32, (), 3>,
pub ball_radius_sq: f32,
}
impl Position for P3 {
const DIM: usize = 3;
fn zero() -> Self {
P3 { x: 0f32, y: 0f32, z: 0f32 }
}
fn abs(&self) -> f32 {
(self.x.powi(2) + self.y.powi(2) + self.z.powi(2)).powf(0.5)
}
fn from_cartesian(cartesian: &[f32]) -> Self {
P3 { x: cartesian[0], y: cartesian[1], z: cartesian[3] }
}
fn to_cartesian(&self) -> Vec<f32> {
vec![self.x, self.y, self.z]
}
}
impl Storage<P3> for ContinuousStorage {
fn is_occupied(&self, position: &P3) -> bool {
let (dist_sq, _) = self.inner.nearest_one(&position.as_arr(), &squared_euclidean).unwrap();
// Is the distance of this point to the next one less than twice the ball radius
dist_sq < 2.0 * self.ball_radius_sq
}
fn deposit(&mut self, position: &P3) {
self.inner.add(&position.as_arr(), ()).expect("Failed to write to space")
}
}
pub struct ContinuousSticker {
/// INVARIANT: THIS SHOULD BE GREATER THAN THE BALL_RADIUS_SQ value
pub range_sq: f32,
}
impl Sticker<P3, ContinuousStorage> for ContinuousSticker {
fn should_stick<R: Rng>(&self, _rng: &mut R, space: &ContinuousStorage, position: &P3) -> bool {
let (a, _) = space.inner.nearest_one(&position.as_arr(), &squared_euclidean).unwrap();
a < self.range_sq
}
}
pub struct ContinuousWalker {
pub walk_step: f32
}
impl Walker<P3> for ContinuousWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &P3) -> P3 {
position.clone() + P3::random_with_radius(rng, self.walk_step)
}
}

View File

@ -0,0 +1,70 @@
use std::ops::Add;
use num_integer::Roots;
use num_traits::Pow;
use crate::system::{GriddedPosition, Position};
use serde::{Serialize, Deserialize};
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct HexPosition {
pub q: i32,
pub r: i32,
}
impl Add for HexPosition {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
HexPosition { q: self.q + rhs.q, r: self.r + rhs.r }
}
}
impl GriddedPosition for HexPosition {
const NEIGHBOURS: u32 = 6;
fn neighbour(&self, neighbour_index: u32) -> Self {
let neighbour_index = neighbour_index as usize;
const OFFSETS: [(i32, i32); 6] = [
(1, 0), (1, -1), (0, -1),
(-1, 0), (-1, 1), (0, 1),
];
self.clone() + HexPosition { q: OFFSETS[neighbour_index].0, r: OFFSETS[neighbour_index].1 }
}
fn linear_index(&self, grid_size: u32) -> usize {
let q = (self.q + (grid_size as i32 / 2)) as usize;
let r = (self.r + (grid_size as i32 / 2)) as usize;
r * (grid_size as usize) + q
}
}
impl Position for HexPosition {
const DIM: usize = 2;
fn zero() -> Self {
HexPosition { q: 0, r: 0 }
}
fn abs(&self) -> f32 {
((self.q.pow(2) + self.r.pow(2) + self.q * self.r) as f32).sqrt()
}
fn from_cartesian(cartesian: &[f32]) -> Self {
let q = (1.0f32 / 3.0f32).sqrt() * cartesian[0] - 1.0 / 3.0 * cartesian[1];
let r = 2.0 / 3.0 * cartesian[1];
Self { q: q as i32, r: r as i32 }
}
fn to_cartesian(&self) -> Vec<f32> {
let q = self.q as f32;
let r = self.r as f32;
vec![
3f32.sqrt() * q + 3f32.sqrt() / 2f32 * r,
(3. / 2.) * r
]
}
}

View File

@ -0,0 +1,87 @@
use anyhow::anyhow;
use rand::Rng;
use crate::system::{GriddedPosition, Position, Storage};
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
use crate::system::sticker::Sticker;
fn taxicab_grid2(a: &[f32; 2], b: &[f32; 2]) -> f32 {
(a[0] - b[0]).abs() + (a[1] - b[1]).abs()
}
fn taxicab_grid3(a: &[f32; 3], b: &[f32; 3]) -> f32 {
(a[0] - b[0]).abs() + (a[1] - b[1]).abs() + (a[2] - b[2]).abs()
}
pub struct KDSpace<const N: usize> {
pub(crate) inner: kiddo::KdTree<f32, (), N>,
}
impl<const N: usize> KDSpace<N> {
pub fn new() -> KDSpace<N> {
KDSpace { inner: kiddo::KdTree::new() }
}
}
impl Storage<Grid2D> for KDSpace<2> {
fn is_occupied(&self, position: &Grid2D) -> bool {
let a = self.inner.best_n_within(&[position.x as f32, position.y as f32], 0f32, 1, &taxicab_grid2).unwrap();
!a.is_empty()
}
fn deposit(&mut self, position: &Grid2D) {
self.inner.add(&[position.x as f32, position.y as f32], ())
.expect("Failed to write to space")
}
}
impl Storage<Grid3D> for KDSpace<3> {
fn is_occupied(&self, position: &Grid3D) -> bool {
let a = self.inner.best_n_within(&[position.x as f32, position.y as f32, position.z as f32], 0f32, 1, &taxicab_grid3).unwrap();
!a.is_empty()
}
fn deposit(&mut self, position: &Grid3D) {
self.inner.add(&[position.x as f32, position.y as f32, position.z as f32], ())
.expect("Failed to write to space")
}
}
pub struct KDProbabilisticSticking {
pub(crate) stick_probability: f32,
}
impl KDProbabilisticSticking {
fn new(stick_probability: f32) -> anyhow::Result<KDProbabilisticSticking> {
return if 0f32 < stick_probability && stick_probability <= 1f32 {
Ok(KDProbabilisticSticking { stick_probability })
} else {
Err(anyhow!("Sticking probability outside of (0, 1] range."))
}
}
}
impl Sticker<Grid2D, KDSpace<2>> for KDProbabilisticSticking {
fn should_stick<R: Rng>(&self, rng: &mut R, space: &KDSpace<2>, position: &Grid2D) -> bool {
let a = space.inner.best_n_within(&[position.x as f32, position.y as f32], 1f32, Grid2D::NEIGHBOURS as usize, &taxicab_grid2)
.unwrap();
if a.len() == 0 {
return false;
}
let q = 1f32 - self.stick_probability;
let a = q.powi(a.len() as i32);
rng.gen_range(0f32..1f32) > a
}
}
impl Sticker<Grid3D, KDSpace<3>> for KDProbabilisticSticking {
fn should_stick<R: Rng>(&self, rng: &mut R, space: &KDSpace<3>, position: &Grid3D) -> bool {
let a = space.inner.best_n_within(&[position.x as f32, position.y as f32, position.z as f32], 1f32, Grid2D::NEIGHBOURS as usize, &taxicab_grid3)
.unwrap();
let q = (1f32 - self.stick_probability);
let a = q.powi(a.len() as i32);
rng.gen_range(0f32..1f32) > a
}
}

10
src/system/spaces/mod.rs Normal file
View File

@ -0,0 +1,10 @@
pub mod vector_storage;
pub use vector_storage::VectorStorage;
pub mod square_grid;
pub mod kd_grid;
pub mod hexagonal;
pub mod continuous_3d;
pub mod continuous_2d;
pub mod nalg;

148
src/system/spaces/nalg.rs Normal file
View File

@ -0,0 +1,148 @@
use std::ops::Add;
use itertools::Itertools;
use nalgebra::{EuclideanNorm, LpNorm, Matrix, Norm, OMatrix, SVector};
use num_traits::Pow;
use serde::{Serialize, Deserialize};
use crate::system::{GriddedPosition, Position, Storage};
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
#[serde(transparent)]
pub struct Gridded<const D: usize>(SVector<i32, D>);
#[derive(Clone, PartialEq, Serialize, Deserialize)]
#[serde(transparent)]
pub struct Continuous<const D: usize>(SVector<f32, D>);
impl<const D: usize> Add for Continuous<D> {
type Output = Continuous<D>;
fn add(self, rhs: Self) -> Self::Output {
Continuous(self.0 + rhs.0)
}
}
impl<const D: usize> Position for Continuous<D> {
const DIM: usize = 0;
fn zero() -> Self {
Continuous(SVector::<f32, D>::zeros())
}
fn abs(&self) -> f32 {
self.0.norm()
}
fn from_cartesian(cartesian: &[f32]) -> Self {
Continuous(SVector::<f32, D>::from_fn(|i, _| cartesian[i]))
}
fn to_cartesian(&self) -> Vec<f32> {
self.0.as_slice().to_vec()
}
}
impl<const D: usize> Add for Gridded<D> {
type Output = Gridded<D>;
fn add(self, rhs: Self) -> Self::Output {
Gridded(self.0 + rhs.0)
}
}
impl<const D: usize> Position for Gridded<D> {
const DIM: usize = 0;
fn zero() -> Self {
Gridded(SVector::<i32, D>::zeros())
}
fn abs(&self) -> f32 {
(self.0.fold(0, |r, c| r + c.pow(2)) as f32).sqrt()
}
fn from_cartesian(cartesian: &[f32]) -> Self {
Gridded(SVector::<i32, D>::from_fn(|i, _| cartesian[i] as i32))
}
fn to_cartesian(&self) -> Vec<f32> {
self.0.as_slice()
.iter()
.map(|a| *a as f32)
.collect_vec()
}
}
pub struct KDSpace<const N: usize>(pub(crate) kiddo::KdTree<f32, (), N>);
impl<const D: usize> Storage<Gridded<D>> for KDSpace<D> {
fn is_occupied(&self, position: &Gridded<D>) -> bool {
let a = self.0.best_n_within(
&position.0.data.0[0].map(|i| i as f32),
0f32,
1,
&|a, b| {
LpNorm(1).metric_distance(
&SVector::<f32, D>::from_row_slice(a),
&SVector::<f32, D>::from_row_slice(b),
)
},
).unwrap();
!a.is_empty()
}
fn deposit(&mut self, position: &Gridded<D>) {
self.0.add(&position.0.data.0[0].map(|i| i as f32), ())
.expect("Failed to write to space")
}
}
impl<const D: usize> Storage<Continuous<D>> for KDSpace<D> {
fn is_occupied(&self, position: &Continuous<D>) -> bool {
let a = self.0.best_n_within(
&position.0.data.0[0],
0f32,
1,
&|a, b| {
EuclideanNorm.metric_distance(
&SVector::<f32, D>::from_row_slice(a),
&SVector::<f32, D>::from_row_slice(b),
)
},
).unwrap();
!a.is_empty()
}
fn deposit(&mut self, position: &Continuous<D>) {
self.0.add(&position.0.data.0[0], ())
.expect("Failed to write to space")
}
}
pub struct VectorStorage {
backing: Vec<bool>,
grid_size: usize,
}
impl<const D: usize> Storage<Gridded<D>> for VectorStorage {
fn is_occupied(&self, position: &Gridded<D>) -> bool {
let mut index: usize = 0;
for i in 0..D {
index += (position.0[i] + (self.grid_size as i32 / 2)) as usize * self.grid_size * i;
}
return self.backing[index];
}
fn deposit(&mut self, position: &Gridded<D>) {
let mut index: usize = 0;
for i in 0..D {
index += (position.0[i] + (self.grid_size as i32 / 2)) as usize * self.grid_size * i;
}
self.backing[index] = true;
}
}

View File

@ -0,0 +1,199 @@
use std::ops::Add;
use num_integer::Integer;
use crate::system::{GriddedPosition, Position};
use serde::{Serialize, Deserialize};
#[derive(Clone, Debug, Hash, PartialEq, Eq, Serialize, Deserialize)]
pub struct Grid2D {
pub x: i32,
pub y: i32,
}
impl Grid2D {
pub fn in_direction(direction: u32, value: i32) -> Self {
match direction {
0 => Grid2D { x: value, y: 0 },
1 => Grid2D { x: 0, y: value },
_ => panic!("Invalid direction"),
}
}
}
impl Add for Grid2D {
type Output = Grid2D;
fn add(self, rhs: Self) -> Self::Output {
Grid2D { x: self.x + rhs.x, y: self.y + rhs.y }
}
}
impl Position for Grid2D {
const DIM: usize = 2;
fn zero() -> Self {
Grid2D { x: 0, y: 0 }
}
fn abs(&self) -> f32 {
(((self.x * self.x) + (self.y * self.y)) as f32).powf(0.5)
}
fn from_cartesian(cartesian: &[f32]) -> Self {
Grid2D {
x: cartesian[0] as i32,
y: cartesian[1] as i32,
}
}
fn to_cartesian(&self) -> Vec<f32> {
vec![self.x as f32, self.y as f32]
}
}
impl GriddedPosition for Grid2D {
const NEIGHBOURS: u32 = 4;
fn neighbour(&self, neighbour_index: u32) -> Self {
let (dim, sign) = neighbour_index.div_rem(&2);
let sign = if sign == 0 { 1 } else { -1 };
let offset = Self::in_direction(dim, sign);
self.clone() + offset
}
fn linear_index(&self, grid_size: u32) -> usize {
let grid_size = grid_size as i32;
assert!(self.x < grid_size && -(grid_size) < self.x);
assert!(self.y < grid_size && -(grid_size) < self.y);
let x = (self.x + (grid_size) / 2) as usize;
let y = (self.y + (grid_size) / 2) as usize;
let linear_index = grid_size as usize * y + x;
if linear_index >= (grid_size * grid_size) as usize {
eprintln!("AHHH SOMETHING WENT WRONG {:?} gives {}", self, linear_index);
}
return linear_index;
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct Grid3D {
pub x: i32,
pub y: i32,
pub z: i32,
}
impl Grid3D {
pub fn in_direction(direction: u32, value: i32) -> Self {
match direction {
0 => Grid3D { x: value, y: 0, z: 0 },
1 => Grid3D { x: 0, y: value, z: 0 },
2 => Grid3D { x: 0, y: 0, z: value },
_ => panic!("Invalid direction"),
}
}
}
impl Add for Grid3D {
type Output = Grid3D;
fn add(self, rhs: Self) -> Self::Output {
Grid3D {
x: self.x + rhs.x,
y: self.y + rhs.y,
z: self.z + rhs.z,
}
}
}
#[test]
fn grid3_add_test() {
assert_eq!(
Grid3D::from_cartesian(&[0f32, 0f32, 0f32]) + Grid3D::from_cartesian(&[0f32, 1f32, 0f32]),
Grid3D::from_cartesian(&[0f32, 1f32, 0f32])
);
assert_eq!(
Grid3D::from_cartesian(&[5.0, 3.0, 1.0]) + Grid3D::from_cartesian(&[-2.0, 5.0, 100.0]),
Grid3D::from_cartesian(&[3.0, 8.0, 101.0])
);
}
impl Position for Grid3D {
const DIM: usize = 3;
fn zero() -> Self {
Grid3D { x: 0, y: 0, z: 0 }
}
fn abs(&self) -> f32 {
(((self.x * self.x) + (self.y * self.y) + (self.z * self.z)) as f32).powf(0.5)
}
fn from_cartesian(cartesian: &[f32]) -> Self {
Self {
x: cartesian[0] as i32,
y: cartesian[1] as i32,
z: cartesian[2] as i32,
}
}
fn to_cartesian(&self) -> Vec<f32> {
vec![self.x as f32, self.y as f32, self.z as f32]
}
}
#[test]
fn grid3_neighbours_test() {
let neighbours = (0..Grid3D::NEIGHBOURS)
.map(|n| Grid3D::neighbour(&Grid3D::zero(), n))
.collect::<Vec<_>>();
assert!(neighbours.contains(&Grid3D { x: 1, y: 0, z: 0 }));
assert!(neighbours.contains(&Grid3D { x: -1, y: 0, z: 0 }));
assert!(neighbours.contains(&Grid3D { x: 0, y: 1, z: 0 }));
assert!(neighbours.contains(&Grid3D { x: 0, y: -1, z: 0 }));
assert!(neighbours.contains(&Grid3D { x: 0, y: 0, z: 1 }));
assert!(neighbours.contains(&Grid3D { x: 0, y: 0, z: -1 }));
}
impl GriddedPosition for Grid3D {
const NEIGHBOURS: u32 = 6;
fn neighbour(&self, neighbour_index: u32) -> Self {
let (dim, sign) = neighbour_index.div_rem(&2);
let sign = if sign == 0 { 1 } else { -1 };
let offset = Self::in_direction(dim, sign);
self.clone() + offset
}
fn linear_index(&self, grid_size: u32) -> usize {
let grid_size = grid_size as i32;
assert!(self.x < grid_size && -(grid_size) < self.x);
assert!(self.y < grid_size && -(grid_size) < self.y);
assert!(self.z < grid_size && -(grid_size) < self.z);
let half_grid = (grid_size) / 2;
let x = (self.x + half_grid) as usize;
let y = (self.y + half_grid) as usize;
let z = (self.z + half_grid) as usize;
let grid_size_usize = grid_size as usize;
let linear_index =
(grid_size_usize * grid_size_usize) * z
+ (grid_size_usize) * y
+ x;
if linear_index >= (grid_size_usize * grid_size_usize * grid_size_usize) as usize {
eprintln!("AHHH SOMETHING WENT WRONG {:?} gives {}", self, linear_index);
}
return linear_index;
}
}

View File

@ -0,0 +1,24 @@
use crate::system::{GriddedPosition, Storage};
pub struct VectorStorage {
backing: Vec<bool>,
grid_size: u32,
dimension: u32,
}
impl VectorStorage {
pub fn new(grid_size: u32, dimension: u32) -> VectorStorage {
VectorStorage { grid_size, dimension, backing: vec![false; (grid_size as usize).pow(dimension) as usize] }
}
}
impl<P: GriddedPosition> Storage<P> for VectorStorage {
fn is_occupied(&self, position: &P) -> bool {
let i = position.linear_index(self.grid_size);
return self.backing[i];
}
fn deposit(&mut self, position: &P) {
self.backing[position.linear_index(self.grid_size)] = true;
}
}

58
src/system/spawner.rs Normal file
View File

@ -0,0 +1,58 @@
use std::f32::consts::PI;
use rand::Rng;
use crate::system::Position;
use crate::system::spaces::continuous_2d::P2;
use crate::system::spaces::continuous_3d::P3;
use crate::system::spaces::hexagonal::HexPosition;
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
pub trait Spawner<P: Position> {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> P;
}
pub struct UniformSpawner;
impl Spawner<Grid2D> for UniformSpawner {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> Grid2D {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y) = (radius * theta.cos(), radius * theta.sin());
Grid2D::from_cartesian(&[x, y])
}
}
impl Spawner<HexPosition> for UniformSpawner {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> HexPosition {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y) = (radius * theta.cos(), radius * theta.sin());
HexPosition::from_cartesian(&[x, y])
}
}
impl Spawner<Grid3D> for UniformSpawner {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> Grid3D {
let theta = rng.gen_range(0f32..1.0) * 2.0 * PI;
let phi = rng.gen_range(0f32..1.0) * 2.0 * PI;
let (x, y, z) = (
radius * theta.sin() * phi.cos(),
radius * theta.sin() * phi.sin(),
radius * theta.cos()
);
Grid3D::from_cartesian(&[x, y, z])
}
}
impl Spawner<P3> for UniformSpawner {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> P3 {
P3::random_with_radius(rng, radius)
}
}
impl Spawner<P2> for UniformSpawner {
fn spawn<R: Rng>(&self, rng: &mut R, radius: f32) -> P2 {
P2::random_with_radius(rng, radius)
}
}

39
src/system/sticker.rs Normal file
View File

@ -0,0 +1,39 @@
use anyhow::anyhow;
use rand::Rng;
use crate::system::{GriddedPosition, Position, Storage};
pub trait Sticker<P: Position, S: Storage<P>> {
fn should_stick<R: Rng>(&self, rng: &mut R, space: &S, position: &P) -> bool;
}
pub struct SimpleSticking;
pub struct ProbabilisticSticking {
pub(crate) stick_probability: f32
}
impl ProbabilisticSticking {
pub fn new(stick_probability: f32) -> anyhow::Result<ProbabilisticSticking> {
return if 0f32 < stick_probability && stick_probability <= 1f32 {
Ok(ProbabilisticSticking { stick_probability })
} else {
Err(anyhow!("Sticking probability outside of (0, 1] range."))
}
}
}
impl<P: GriddedPosition, S: Storage<P>> Sticker<P, S> for SimpleSticking {
fn should_stick<R: Rng>(&self, _rng: &mut R, space: &S, position: &P) -> bool {
(0..P::NEIGHBOURS)
.map(|n| position.neighbour(n))
.any(|neighbour| space.is_occupied(&neighbour))
}
}
impl<P: GriddedPosition, S: Storage<P>> Sticker<P, S> for ProbabilisticSticking {
fn should_stick<R: Rng>(&self, rng: &mut R, space: &S, position: &P) -> bool {
(0..P::NEIGHBOURS)
.map(|n| position.neighbour(n))
.any(|neighbour| space.is_occupied(&neighbour) && rng.gen_range(0.0f32..=1.0) < self.stick_probability)
}
}

147
src/system/walker.rs Normal file
View File

@ -0,0 +1,147 @@
use std::hash::Hash;
use itertools::Itertools;
use rand::distributions::Slice;
use rand::prelude::Rng;
use crate::system::{GriddedPosition, Position};
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
pub trait Walker<P: Position> {
fn walk<R: Rng>(&self, rng: &mut R, position: &P) -> P;
}
pub struct LocalRandomWalker;
impl<P: GriddedPosition> Walker<P> for LocalRandomWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &P) -> P {
position.neighbour(rng.gen_range(0u32..P::NEIGHBOURS))
}
}
pub struct DiagonalRandomWalker;
impl Walker<Grid3D> for DiagonalRandomWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &Grid3D) -> Grid3D {
static OFFSETS: [Grid3D; 26] = [
Grid3D { x: 1, y: 0, z: 0 },
Grid3D { x: 1, y: 1, z: 0 },
Grid3D { x: 1, y: -1, z: 0 },
Grid3D { x: -1, y: 0, z: 0 },
Grid3D { x: -1, y: 1, z: 0 },
Grid3D { x: -1, y: -1, z: 0 },
Grid3D { x: 0, y: 1, z: 0 },
Grid3D { x: 0, y: -1, z: 0 },
Grid3D { x: 1, y: 0, z: -1 },
Grid3D { x: 1, y: 1, z: -1 },
Grid3D { x: 1, y: -1, z: -1 },
Grid3D { x: -1, y: 0, z: -1 },
Grid3D { x: -1, y: 1, z: -1 },
Grid3D { x: -1, y: -1, z: -1 },
Grid3D { x: 0, y: 1, z: -1 },
Grid3D { x: 0, y: -1, z: -1 },
Grid3D { x: 0, y: 0, z: -1 },
Grid3D { x: 1, y: 0, z: 1 },
Grid3D { x: 1, y: 1, z: 1 },
Grid3D { x: 1, y: -1, z: 1 },
Grid3D { x: -1, y: 0, z: 1 },
Grid3D { x: -1, y: 1, z: 1 },
Grid3D { x: -1, y: -1, z: 1 },
Grid3D { x: 0, y: 1, z: 1 },
Grid3D { x: 0, y: -1, z: 1 },
Grid3D { x: 0, y: 0, z: 1 },
];
position.clone() + OFFSETS[rng.gen_range(0..OFFSETS.len())].clone()
}
}
impl Walker<Grid2D> for DiagonalRandomWalker {
fn walk<R: Rng>(&self, rng: &mut R, position: &Grid2D) -> Grid2D {
static OFFSETS: [Grid2D; 8] = [
Grid2D { x: 1, y: 0 },
Grid2D { x: 1, y: 1 },
Grid2D { x: 1, y: -1 },
Grid2D { x: -1, y: 0 },
Grid2D { x: -1, y: 1 },
Grid2D { x: -1, y: -1 },
Grid2D { x: 0, y: 1 },
Grid2D { x: 0, y: -1 },
];
position.clone() + OFFSETS[rng.gen_range(0..OFFSETS.len())].clone()
}
}
fn test_uniformity_and_range<W: Walker<P>, P>(walker: W, expected: &[P], n: usize, tolerance: f32) where P: GriddedPosition + Hash + Eq {
use rand::thread_rng;
let mut rng = thread_rng();
let origin = &P::zero();
let results: Vec<P> = (0..n)
.map(|_| walker.walk(&mut rng, origin))
.collect();
let groups = results.iter()
.into_group_map_by(|a| (*a).clone());
assert_eq!(groups.len(), expected.len(), "Wrong number of walk positions generated");
assert!(results.iter().unique().all(|a| expected.contains(a)), "Contains unexpected walk position");
for group in groups.values() {
let proportion = group.len() as f32 / n as f32;
assert!((proportion - (1.0 / expected.len() as f32)).abs() < tolerance, "Failed tolerance check");
}
}
#[test]
fn uniformity_direct_grid2d() {
test_uniformity_and_range(LocalRandomWalker, &[
Grid2D { x: 1, y: 0 },
Grid2D { x: -1, y: 0 },
Grid2D { x: 0, y: 1 },
Grid2D { x: 0, y: -1 },
], 1_000_000, 0.001);
}
#[test]
fn uniformity_direct_grid3d() {
test_uniformity_and_range(LocalRandomWalker, &[
Grid3D { x: 1, y: 0, z: 0 },
Grid3D { x: -1, y: 0, z: 0 },
Grid3D { x: 0, y: 1, z: 0 },
Grid3D { x: 0, y: -1, z: 0 },
Grid3D { x: 0, y: 0, z: 1 },
Grid3D { x: 0, y: 0, z: -1 },
], 1_000_000, 0.001);
}
#[test]
fn diagonal_grid2d() {
let mut expected = Vec::new();
for x in -1..=1 {
for y in -1..=1 {
if !(x == 0 && y == 0) {
expected.push(Grid2D { x, y })
}
}
}
test_uniformity_and_range(DiagonalRandomWalker, &expected, 1_000_000, 0.001);
}
#[test]
fn diagonal_grid3d() {
let mut expected = Vec::new();
for x in -1..=1 {
for y in -1..=1 {
for z in -1..=1 {
if !(x == 0 && y == 0 && z == 0) {
expected.push(Grid3D { x, y, z })
}
}
}
}
test_uniformity_and_range(DiagonalRandomWalker, &expected, 1_000_000, 0.001);
}

33
src/tools/analysis.rs Normal file
View File

@ -0,0 +1,33 @@
use crate::DataAnalysisCli;
use polars::prelude::*;
use polars::io::RowCount;
use rayon::prelude::*;
use walkdir::WalkDir;
pub(crate) fn main(cli: &DataAnalysisCli) {
let a: Vec<_> = WalkDir::new(&cli.sp_dir)
.into_iter()
.par_bridge()
.filter(|run_file| run_file.as_ref().unwrap().path().is_file())
.map(|run_file| {
let run_file = run_file.unwrap().path().to_path_buf();
let probability = run_file.parent().unwrap().file_name().unwrap().to_str().unwrap().parse::<f32>().unwrap();
let run_seed = run_file.file_stem().unwrap().to_str().unwrap();
LazyCsvReader::new(&run_file)
.has_header(true)
// Add N, done at this stage to only count within single CSV file
.with_row_count(Some(RowCount { name: String::from("N"), offset: 0 }))
.finish().unwrap()
.with_columns([
lit(probability).alias("probability"),
lit(run_seed).alias("run")
])
}).collect();
let p = concat(a, true, true).unwrap();
let p = p.collect().unwrap();
println!("{:?}", p);
}

134
src/tools/boxcount.rs Normal file
View File

@ -0,0 +1,134 @@
use std::fs::File;
use std::os::unix::fs::symlink;
use crate::system::spaces::square_grid::{Grid2D, Grid3D};
use itertools::{Itertools, MinMaxResult};
use clap::Parser;
use serde::Serialize;
use crate::BoxCountCli;
use crate::cli::cli::OutputFormat;
use crate::system::{GriddedPosition, Position};
use crate::system::model::HistoryLine;
use crate::tools::read;
fn bb(data: &Vec<Grid2D>) -> ((i32, i32), (i32, i32)) {
let x = data
.iter().minmax_by(|a, b| a.x.cmp(&b.x));
let y = data
.iter().minmax_by(|a, b| a.y.cmp(&b.y));
match (x, y) {
(MinMaxResult::MinMax(min_x, max_x), MinMaxResult::MinMax(min_y, max_y)) => {
((min_x.x, min_y.y), (max_x.x, max_y.y))
}
_ => panic!("Cannot determine bounding box")
}
}
fn box_count_2d(data: &Vec<Grid2D>, box_number: u32) -> (f64, usize) {
let ((x_min, y_min), (x_max, y_max)) = bb(data);
let x_range = (x_max - x_min) as f64;
let y_range = (y_max - y_min) as f64;
let w: f64 = x_range / (box_number as f64);
let boxes_occupied = data.iter()
.map(|Grid2D { x, y }| [((x - x_min) as f64 / w) as i32, ((y - y_min) as f64 / w) as i32])
.unique()
.count();
(w, boxes_occupied)
}
fn box_count_3d(data: &Vec<Grid3D>, size: u32) -> usize {
let n = data.len();
let x_min = data
.iter()
.min_by(|Grid3D { x: x1, .. }, Grid3D { x: x2, .. }| x1.cmp(x2))
.unwrap().x;
let x_max = data
.iter()
.max_by(|Grid3D { x: x1, .. }, Grid3D { x: x2, .. }| x1.cmp(x2))
.unwrap().x;
let y_min = data
.iter()
.min_by(|Grid3D { y: v1, .. }, Grid3D { y: v2, .. }| v1.cmp(v2))
.unwrap().y;
let y_max = data
.iter()
.max_by(|Grid3D { y: v1, .. }, Grid3D { y: v2, .. }| v1.cmp(v2))
.unwrap().y;
let z_min = data
.iter()
.min_by(|Grid3D { z: v1, .. }, Grid3D { z: v2, .. }| v1.cmp(v2))
.unwrap().y;
let z_max = data
.iter()
.max_by(|Grid3D { z: v1, .. }, Grid3D { z: v2, .. }| v1.cmp(v2))
.unwrap().y;
let x_range = (x_max - x_min) as f64;
let y_range = (y_max - y_min) as f64;
let z_range = (z_max - z_min) as f64;
let w: f64 = x_range / (size as f64);
let grid_points = data.iter()
.map(|Grid3D { x, y, z }| [
((x - x_min) as f64 / w) as i32,
((y - y_min) as f64 / w) as i32,
((z - z_min) as f64 / w) as i32,
])
.collect::<Vec<_>>();
return grid_points.iter()
.unique()
.count();
}
fn box_count_nd<const N: usize>(data: &Vec<[f32; N]>, size: u32) -> usize {
let ranges = (0..N).map(|n|
match data.iter()
.minmax_by(|a, b| a[n].total_cmp(&b[n])) {
MinMaxResult::NoElements => panic!("No data"),
MinMaxResult::OneElement(_) => panic!("Needs more than one point to compute boxcount"),
MinMaxResult::MinMax(min, max) => [min[n], min[n]],
}).collect::<Vec<_>>();
let w: f32 = (ranges[0][1] - ranges[0][0]) / (size as f32);
return data.iter()
.map(|point| -> [i32; N] { std::array::from_fn(|n| ((point[n] - ranges[n][0]) / w) as i32) })
.unique()
.count();
}
#[derive(Serialize)]
struct FDRow {
w: f64,
n_occupied: usize,
}
pub(crate) fn main(cli: &BoxCountCli) {
let particles: Vec<Grid2D> = read(&cli.path, cli.format);
let n_particles = dbg!(particles.len());
let box_side_counts = 1..500;
let mut writer = csv::Writer::from_path(&cli.output)
.expect("Unable to create csv");
box_side_counts
.map(|box_side_count| box_count_2d(&particles, box_side_count))
// .filter(|(w, n_occupied)| *n_occupied < n_particles) // Remove saturated values
.map(|(w, n_occupied)| FDRow { w, n_occupied })
.for_each(|row| writer.serialize(row).expect("Failed to write row"));
writer.flush().unwrap();
}

31
src/tools/mod.rs Normal file
View File

@ -0,0 +1,31 @@
use std::fs::File;
use std::path::Path;
use serde::de::DeserializeOwned;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::Position;
pub mod boxcount;
pub mod render;
pub mod analysis;
pub fn read<T: Position>(path: &Path, format: OutputFormat) -> Vec<T> where T: DeserializeOwned {
match format {
OutputFormat::FullDataJson => read_json(path),
OutputFormat::Positions => read_csv(path)
}
}
pub fn read_json<T: Position>(path: &Path) -> Vec<T> where T: DeserializeOwned {
serde_json::from_reader::<_, Vec<HistoryLine<T>>>(File::open(path).expect("Failed to open file"))
.expect("Failed to read json")
.iter()
.map(|l| (l.position.clone()))
.collect::<Vec<_>>()
}
pub fn read_csv<T: Position>(path: &Path) -> Vec<T> where T: DeserializeOwned {
csv::Reader::from_path(path).expect("Failed to read positions csv").deserialize::<T>()
.collect::<Result<Vec<T>, _>>()
.unwrap()
}

125
src/tools/render.rs Normal file
View File

@ -0,0 +1,125 @@
#![feature(generic_const_exprs)]
#![feature(let_chains)]
use std::fs::File;
use std::path::PathBuf;
use anyhow::Context;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::spaces::square_grid::Grid2D;
use clap::Parser;
use colorous::Color;
use itertools::Itertools;
use num_traits::real::Real;
use num_traits::Signed;
use serde::de::DeserializeOwned;
use serde::Deserialize;
use svg::Node;
use svg::node::element::{Circle, Polygon, Rectangle};
use crate::{RenderCli, Space};
use crate::system::{GriddedPosition, Position};
use crate::system::spaces::continuous_2d::P2;
use crate::system::spaces::hexagonal::HexPosition;
use crate::tools::read;
#[derive(Debug, Parser)]
struct Args {
format: OutputFormat,
path: PathBuf,
output: PathBuf,
}
trait ToSvg {
fn to_svg(&self, colour: Color) -> Box<dyn Node>;
}
impl ToSvg for Grid2D {
fn to_svg(&self, colour: Color) -> Box<dyn Node> {
Box::new(Rectangle::new()
.set("fill", format!("rgb({}, {}, {})", colour.r, colour.g, colour.b))
.set("width", 1)
.set("height", 1)
.set("x", self.x)
.set("y", self.y))
}
}
impl ToSvg for P2 {
fn to_svg(&self, colour: Color) -> Box<dyn Node> {
Box::new(Circle::new()
.set("fill", format!("rgb({}, {}, {})", colour.r, colour.g, colour.b))
.set("r", 1)
.set("cx", self.x)
.set("cy", self.y))
}
}
impl ToSvg for HexPosition {
fn to_svg(&self, colour: Color) -> Box<dyn Node> {
let points = [
[25.045, 128.0], [256.0, 0.0], [486.955, 128.0], [486.955, 384.0], [256.0, 512.0], [25.045, 384.0]
];
let a = 256.0;
// let a = 400.0;
let b = points.map(|x| [
(x[0] / a),
(x[1] / a)]
);
let c = b.map(|p| format!("{},{}", p[0], p[1])).join(" ");
let cartesian = self.to_cartesian();
Box::new(Polygon::new()
.set("fill", format!("rgb({}, {}, {})", colour.r, colour.g, colour.b))
.set("points", c)
.set("transform", format!("translate({}, {})", cartesian[0], cartesian[1])))
}
}
pub fn compute_max_size<P: Position>(positions: &[P]) -> f32 {
let mut positions = positions.iter().map(P::to_cartesian);
let mut maximums: Vec<f32> = positions.next().unwrap();
for cartesian in positions {
for i in 0..maximums.len() {
maximums[i] = maximums[i].abs().max(cartesian[i].abs());
}
}
maximums.into_iter()
.fold(0f32, |r, c| r.abs().max(c.abs()))
}
fn render<P: Position>(args: &RenderCli) where P: DeserializeOwned + ToSvg {
let positions = read::<P>(&args.path, args.format);
let max_size = compute_max_size(&positions) + 10.0;
let mut svg = svg::Document::new()
.set("width", args.image_size)
.set("height", args.image_size)
.set("viewBox", format!("{} {} {} {}", -max_size, -max_size, max_size * 2.0, max_size * 2.0));
svg.append(Rectangle::new()
.set("fill", "white")
.set("width", max_size * 2.0)
.set("height", max_size * 2.0)
.set("x", -max_size)
.set("y", -max_size)
);
for (n, position) in positions.iter().enumerate() {
let colour = if args.colour { colorous::VIRIDIS.eval_rational(n, positions.len()) } else { Color::default() };
svg.append(position.to_svg(colour));
}
svg::write(File::create(&args.output).unwrap(), &svg).unwrap();
}
pub(crate) fn main(args: &RenderCli) {
match args.space {
Space::Grid2D => render::<Grid2D>(args),
Space::Continuous2D => render::<P2>(args),
Space::Hex => render::<HexPosition>(args),
}
}

83
src/tools_cli.rs Normal file
View File

@ -0,0 +1,83 @@
#![feature(generic_const_exprs)]
#![feature(let_chains)]
#![feature(array_zip)]
use std::fs::File;
use std::ops::{Index, Mul};
use std::path::PathBuf;
use anyhow::Context;
use crate::cli::cli::OutputFormat;
use crate::system::model::HistoryLine;
use crate::system::spaces::square_grid::Grid2D;
use clap::{Parser, Command, Args, Subcommand};
use itertools::{concat, Itertools};
use polars::io::RowCount;
use serde::de::DeserializeOwned;
use serde::Deserialize;
use svg::Node;
use svg::node::element::Rectangle;
use walkdir::WalkDir;
use crate::system::Position;
use crate::system::spaces::hexagonal::HexPosition;
mod system;
mod cli;
mod tools;
#[derive(Debug, Parser)]
enum ToolsCli {
Render(RenderCli),
BoxCount(BoxCountCli),
DataAnalysis(DataAnalysisCli),
}
#[derive(clap::ValueEnum, Clone, Debug, Copy)]
enum Space {
Grid2D,
Continuous2D,
Hex,
}
#[derive(Debug, Args)]
struct RenderCli {
#[arg(value_enum, short, long, default_value_t = OutputFormat::Positions)]
format: OutputFormat,
#[arg(value_enum, short, long, default_value_t = Space::Grid2D)]
space: Space,
path: PathBuf,
output: PathBuf,
#[arg(short, long, default_value_t = 800)]
image_size: u32,
#[arg(short, long, default_value_t = false)]
colour: bool,
}
#[derive(Debug, Args)]
struct BoxCountCli {
#[arg(value_enum, short, long, default_value_t = OutputFormat::Positions)]
format: OutputFormat,
path: PathBuf,
output: PathBuf,
}
#[derive(Debug, Args)]
struct DataAnalysisCli {
sp_dir: PathBuf,
}
fn main() -> anyhow::Result<()> {
let args = ToolsCli::parse();
dbg!(&args);
match args {
ToolsCli::Render(cli) => tools::render::main(&cli),
ToolsCli::BoxCount(cli) => tools::boxcount::main(&cli),
ToolsCli::DataAnalysis(cli) => tools::analysis::main(&cli),
}
Ok(())
}